GUJARAT TECHNOLOGICAL UNIVERSITY BE- SEMESTER-III (NEW) EXAMINATION – WINTER 2020 Subject Code:3130507 Date:04/03/2021 Subject Name:Chemical Engineering Thermodynamics I			
Time	Time:10:30 AM TO 12:30 PM Total Marks:5		
Instructions:			
	1. A 2. N	ttempt any FOUR questions out of EIGHT questions. Take suitable assumptions wherever necessary	
	2. R	igures to the right indicate full marks.	
0.1	(a)	What are various units of temperature? Also montion relations between	02
Q.1	(a)	them on various temperature scales?	03
	(b)	Differentiate between i) State function -Vs- Path function ii) Reversible process -Vs- Irreversible process	04
	(c)	Apply first law of thermodynamics to steady state flow process and derive mass and energy balance equation for open system.	07
Q.2	(a)	Define and explain Ideal gas.	03
τ.	(b)	What is EOS (Equation of State)? List some of them.	04
	(c)	Derive equation of constants of Vander Waal's equation of state in terms of critical constants of a substance.	07
Q.3	(a)	Mention Statements of second law of thermodynamics.	03
-	(b)	Define and explain following :	04
		(i) Sensible heat (ii) Latent heat	
	(c)	Derive Carnot equations for a Carnot cycle using an ideal gas	07
	(0)		01
Q.4	(a)	State and explain Hess's law of constant heat summation.	03
	(\mathbf{b})	Explain concept of entropy in brief	04
	(C)	approximately atmospheric pressure, what is its entropy change ? The heat capacity equation for ethylene is:	07
		$\frac{C_P^{ig}}{R} = 1.424 + 14.394 \times 10^{-3} T_{lm} - 4.392 \times 10^{-6} T_{am} T_{lm}$	
Q.5	(a)	Explain Residual properties in brief.	03
	(\mathbf{D})	Derive Maxwell equations using fundamental property relations for a	04 07
	(0)	homogeneous fluid of constant composition.	07
- (-	A .'		
Q.6	(a)	How much heat is required when 200 gm of CaCO ₃ is heated at a_{1}	07
		Data: $C_P/R = 12.572 + 2.637 \times 10^{-3} \text{ T} - 3.12 \times 10^{5} \text{ T}^{-2}$. T is in K	
	(b)	Explain Various types of thermodynamic diagrams in brief.	07
07	(a)	With reference to refrigeration. Define following:	03
Q.1	(a)	(i) COP (Coefficient of Performance)	05
		(ii) Ton of refrigeration (iii) Heat Pump	
	(b)	Compare Vapor Compression refrigeration and Absorption refrigeration cycles.	04

- Show that the maximum velocity attained by a gas in steady state adiabatic **(c)** 07 flow in a horizontal pipe of a constant cross-sectional area is equal to the sonic velocity.
- 03 **Q.8 (a)** Define Mach number and state its significance
 - **(b)** What is a Nozzle? Briefly describe flow through nozzles. 04
 - List the factors affecting the choice of refrigerant and explain vapor 07 (c) pressure of refrigerant in detail.

HUQUEStionPapers.com