Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY BE- SEMESTER-III (NEW) EXAMINATION – WINTER 2020 Subject Code:3130508 Date:05/03/2021 Subject Name:Material & Energy Balance Computation					
Tim	e:10	:30 AM TO 12:30 PM Total Mai	Total Marks:56		
Instru	uctior 1. 2. 3.	ns: Attempt any FOUR questions out of EIGHT questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.			
			Marks		
Q.1	(a) (b)	Define Fundamental and Derived Units with example In double effect evaporator plant the second effect is maintain under vacuum of 475torr (mmHg).find the absolute pressure in kpa	03 04		
	(c)	A gas contain in a closed vessel at pressure of 121.59 kPa g and 299 K (29 ^o C) gas heated to temperature of 1273 K (1000 ^o C) Find the pressure to which a closed vessel should be designed.	07		
Q.2	(a)	Describe (1) Stoichiometric Ratio (2) Stoichiometric Proportion (3) Excess Reactant	03		
	(b) (c)	Discuss about By Pass operations A solution of caustic soda in water contains 20% NaOH (by weight) at 333 K. The density of the solution is 1.196kg/l. Find the molarity, normality and molality of the solution	04 07		
Q.3	(a)	Explain the methods for solving problems of material balance without chemical reactions	03		
	(b)	A combustion reactor is fed with 50 kmol/ of butane and 2100kmol/h air	04		
	(c)	It is required to make 1000 kg mixed acid containing 60% H2SO4, 32% HNO3 and 8% water by blending (i) the spent acid containing 11.3 % HNO3, 44.4% H2SO4 and 44.3 % H2O. (ii) Aqueous 90% HNO3 and (iii) aqueous 98 % H2SO4. All percentages are by mass. Calculate the quantities of each of the three acids required for blending	07		
Q.4	(a) (b)	 Define : Drying, Evaporation, crystallization (A) In Manufacture of chlorine, feed containing HCL acid gas and air are fed to an oxidizer the product gases leaving the oxidizer are found to contain 13.2 % HCL, 6.3% O₂, 42.9% N₂, 30% CL₂, 7.6% H₂O Calculate A) The percent excess air used. B) The composition by weight of gases entering the oxidizer 	03 04		

- (c) Soybean seeds are extracted with hexane in batch extractors. The flaked seeds contains 18.6 % oil, 69.0 % solids & 12.4 % moisture cake. At the end of the extraction process the cake is separated from the hexane oil mixture. The cake analysis yields, 0.8 % oil, 87.8% solids and 11.5 % moisture. Find the% recovery of oil .All percentage is on weight basis
- Q.5 (a) Describe Importance of energy balance in chemical industry.
 - (b) Definematerial balance and explain methods solving material balance 04 without chemical reaction.
 - (c) Temperature of pure Oxygen is raised from 350 to 1500 K. calculate the amount of heat to be supplied for raising the temperature of 1 kmol oxygen using the following Cpo data

Cpo = a + bT + cT2 + dT3 KJ/ (Kmol. K)

Gas	a	b x 10 ³	c x 10 ⁶	d x 10 ⁹
02	26.0257	11.7551	-2.3426	-0.5623

- **Q.6** (a) Define the following terms:
 - (1) Heat of formation
 - (2) Heat of combustion
 - (3) Heat of reaction
 - (b) In Production of SO₃, 100 kmol of SO₂, And 200 kmol of O₂ are fed to a reactor. The Product stream is found to contain 80 kmol SO₃. Find the Percentage conversion of SO₂
 - (c) Pure methane gas is heated from 303K to 523K at atmospheric pressure. 07 Calculate the heat added per kmole methane using Cp^0 data given below $Cp^o = a + bT + cT2 + dT3$ KJ/ (Kmol. K)

Gas a b x 10^3 c x 10^6 d x 10^7 C0 10 2404 521125 11 072 11 21	1.0(1 1 2 2	1	~
C_0 10.2404 52.1125 11.072 11.21	$c \ge x \cdot 10^6$ d x 10^9	b x 10 ³	а	Gas
CU_2 19.2494 32.1135 11.973 -11.31	-11.3173	52.1135	19.2494	C0 ₂

- Q.7 (a) In manufacture of acetic acid by oxidation of acetaldehyde, 100kmol of acetaldehyde is fed to a reactor per hour. The product leaving the reactor contain 14.81% acetaldehyde, 59.29% acetic acid , and rest of oxygen. Find percentage conversion of acetaldehyde
 - (b) The GHV(gross heating value) of gaseous n- butane is 2877.40 kj/ mol at 298 K. calculate its NHV (net heating value) in KJ/kg
 - (c) Explain Air Requirement for fuel and used method of theoretical oxygen, 07 theoretical, air Excess air
- Q.8 (a) In Production of SO₃, 100 kmol of SO₂, And 200 kmol of O₂ are fed to a reactor. The Product stream is found to contain 80 kmol SO₃. Calculate the composition of the product stream on mole basis
 - (b) Crude oil is analyzed to contain 87% carbon , 12.5% hydrogen and 0.5%
 output calculate net calorific value of crude oil at 298 K.
 (c) Discuss about proximate and ultimate analysis of fuel
 07

03

07

03