\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE- SEMESTER-IV (NEW) EXAMINATION - WINTER 2020

Subject Code:3140510
Date:15/02/2021
Subject Name:Numerical Methods in Chemical Engineering
Time:02:30 PM TO 04:30 PM
Total Marks:56 Instructions:

1. Attempt any FOUR questions out of EIGHT questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Discuss bracketing methods \& open methods.
(b) Fit the straight line that best fits to the following data:

x	0	1	2	3	4
y	1	1.8	3.3	4.5	6.3

(c) Fit a second degree parabola to the following data

x	1	2	3	4
y	1.7	1.8	2.3	3.2

Q. 2 (a) Find the percentage error in the area of an ellipse when errors of 2% and 3% are made in measuring its major axes respectively.
(b) Perform three iterations of the bisection method to obtain the root of the equation $2 \sin x-x=0$, correct up to three decimal places.
(c) Find the root of $x^{3}-2 x-1=0$ correct up to three decimal places using Secant method (starting from $x_{0}=1.5$ and $x_{1}=2$).
Q. 3 (a) Explain the Gauss Jordan method to solve the system of linear equations.
(b) Solve the following system of equations by Gauss Elimination method:

$$
\begin{gathered}
x+3 y+2 z=5 \\
2 x+4 y-6 z=-4 \\
x+5 y+3 z=10
\end{gathered}
$$

(c) Find a root of the equation $x^{3}+x-1=0$ correct up
to four decimal places by using Newton-Raphson iteration formula.
Q. 4 (a) Find the largest eigen value of the matrix
$A=\left[\begin{array}{cc}3 & -5 \\ -2 & 4\end{array}\right]$
(b) Solve the following system of equations by Gauss

Jacobi method:

$$
\begin{gathered}
6 x+2 y-z=4 \\
x+5 y+z=3 \\
2 x+y+4 z=27
\end{gathered}
$$

(c) Solve the following system of equations by Gauss Siedel method:

$$
\begin{aligned}
& x+2 y+z=0 \\
& 3 x+y-z=0 \\
& x-y+4 z=3
\end{aligned}
$$

Starting with (1,1,1)
Q. 5 (a) Use the Euler's method to find $\mathrm{y}(0.1)$, given that
$\frac{d y}{d x}=\frac{y-x}{y+x}, \quad y(0)=1$, Taking $\mathrm{h}=0.2$
(b) Apply $4^{\text {th }}$ order Runge Kutta Method to compute y for $x=0.1$, given that $\frac{d y}{d x}=2 x+y, y(0)=1$, $\mathrm{h}=0.1$
(c) Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by using (1) Trapezoidal rule
(2) Simpson's $1 / 3$ Rule (3) Simpson's $3 / 8$ Rule
Q. 6 (a) Discuss in brief about boundary value problems.
(b) Using Newton's divided difference formula, evaluate $f(8)$ from the following data:

x	4	5	7	10	11	13
$f(x)$	48	100	244	900	1210	2028

(c) Use the Taylor series method to find $\mathrm{y}(0.2)$, given that

$$
\frac{d y}{d x}=2 y+3 e^{x}, y(0)=1 . \text { Taking } \mathrm{h}=0.1
$$

Q. 7 (a) Derive formula for Trapezoidal Rule of numerical integration.
(b) By Simpson's $3 / 8$ rule, evaluate $\int_{0}^{1} \frac{\sin x}{x} d x$ taking
$h=\frac{1}{6}$.
(c) Use Lagrange's interpolation formula to find the value of y when $x=12$, if the values of x and y are given below:

x	11	13	14	18	20	23
y	25	47	68	82	102	124

Q. 8 (a) Derive formula for Simpson's $1 / 3$ Rule of numerical integration.
(b) Find $\cosh (0.56)$ from the following table using Newton's forward interpolation method.

x	0.5	0.6	0.7	0.8
y	1.127626	1.185465	1.255169	1.337435

(c) Use Milne's predictor-corrector method to find $\mathrm{y}(0.4)$ for $y^{\prime}=x+y^{2}, y(0)=1$ with $h=0.1$

