GUJARAT TECHNOLOGICAL UNIVERSITY BE- SEMESTER-IV (NEW) EXAMINATION – WINTER 2020 Code:3140510 Date:15/02/2021

Subject Code:3140510Date:15/02/2021Subject Name:Numerical Methods in Chemical EngineeringTime:02:30 PM TO 04:30 PMTotal Marks:56Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

		I	MARKS
Q.1	(a)	Discuss bracketing methods & open methods.	03
	(b)	Fit the straight line that best fits to the following data:	04
	(c)	Fit a second degree parabola to the following data	07
Q.2	(a)	Find the percentage error in the area of an ellipse when errors of 2% and 3% are made in measuring its major axes respectively.	03

- (b) Perform three iterations of the bisection method to 04 obtain the root of the equation $2 \sin x x = 0$, correct up to three decimal places.
- (c) Find the root of $x^3 2x 1 = 0$ correct up to three decimal places using Secant method (starting from $x_0 = 1.5$ and $x_1 = 2$).
- Q.3 (a) Explain the Gauss Jordan method to solve the system of 03 linear equations.
 - (b) Solve the following system of equations by Gauss 04 Elimination method:

$$x + 3y + 2z = 5$$

$$2x + 4y - 6z = -4$$

$$x + 5y + 3z = 10$$

- (c) Find a root of the equation $x^3 + x 1 = 0$ correct up to four decimal places by using Newton-Raphson iteration formula.
- Q.4 (a) Find the largest eigen value of the matrix 03 $A = \begin{bmatrix} 3 & -5 \\ -2 & 4 \end{bmatrix}$
 - (b) Solve the following system of equations by Gauss 04 Jacobi method:

6x + 2y - z = 4x + 5y + z = 32x + y + 4z = 27

(c) Solve the following system of equations by Gauss Siedel 07 method:

x + 2y + z = 0 3x + y - z = 0x - y + 4z = 3

Starting with (1,1,1)

- Q.5 (a) Use the Euler's method to find y (0. 1), given that $\frac{dy}{dx} = \frac{y-x}{y+x}, \quad y(0) = 1, \text{ Taking h} = 0.2$ 03
 - (b) Apply 4th order Runge Kutta Method to compute y for x = 0.1, given that $\frac{dy}{dx} = 2x + y$, y(0) = 1, h=0.1
 - (c) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using (1) Trapezoidal rule (2) Simpson's 1/3 Rule (3) Simpson's 3/8 Rule 07

Q.6 (a) Discuss in brief about boundary value problems. 03

(b) Using Newton's divided difference formula, evaluate 04 f(8) from the following data:

X	4	5	7	10	11	13
f(x)	48	100	244	900	1210	2028

(c) Use the Taylor series method to find y (0.2), given that $\frac{dy}{dx} = 2y + 3e^x$, y(0) = 1. Taking h=0.1.

- Q.7 (a) Derive formula for Trapezoidal Rule of numerical 03 integration.
 - (b) By Simpson's 3/8 rule, evaluate $\int_0^1 \frac{\sin x}{x} dx$ taking $h = \frac{1}{6}$.
 - (c) Use Lagrange's interpolation formula to find the value of y when x = 12, if the values of x and y are given below:

Х	11	13	14	18	20	23
у	25	47	68	82	102	124

- Q.8 (a) Derive formula for Simpson's 1/3 Rule of numerical 03 integration.
 - (b) Find cosh(0.56) from the following table using 04 Newton's forward interpolation method.

X	0.5	0.6	0.7	0.8
У	1.127626	1.1 <mark>85465</mark>	1.255169	1.337435

(c) Use Milne's predictor-corrector method to find y(0.4) 07 for $y' = x + y^2$, y(0)=1 with h=0.1
