\qquad
\qquad
GUJARAT TECHNOLOGICAL UNIVERSITY
BE- SEMESTER-III (NEW) EXAMINATION - WINTER 2020
Subject Code:3130608Date:06/03/2021
Subject Name:Mechanics of Solids Time:10:30 AM TO 12:30 PM
Instructions:
Total Marks:56

1. Attempt any FOUR questions out of EIGHT questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Explain following terms (i) Rigid body, (ii) Deformable body (iii) Elastic body. 03
(b) State Hook's low. Draw stress strain curve for Mild Steel Specimen and explain 04 each point in detail.
(c) Three forces are acting on a weightless equilateral triangular plate as shown in 07
Fig. 1. Determine magnitude, direction and position of resultant force.
Q. 2 (a) Explain : (i) Type of beams (ii) Type of loading on the beams. 03
(b) Determine support reaction for the given beam shown in Fig. 2. 04
(c) A simply supported beam 10 m long carries three point loads at $100 \mathrm{kN}, 150 \mathrm{kN}$ 07and 200 kN at $3 \mathrm{~m}, 5 \mathrm{~m}$ and 8 m from left support. Draw S.F. and B.M. diagramfor the beam.
Q. 3 (a) Discuss critically the assumption made in theory of Bending. 03
(b) A cantilever beam 2 m long has rectangular section $200 \mathrm{~mm} \times 500 \mathrm{~mm}$. Find out 04point load at free end of beam if permissible bending stress is $20 \mathrm{~N} / \mathrm{mm}^{2}$.
(c) A beam of I-section, having 5 m length is simply supported at each end and bears 07a u.d.l. of $20 \mathrm{kN} / \mathrm{m}$ as shown in Fig. 3. Determine maximum tensile andcompressive bending stress.
Q. 4 (a) Derive with usual notations the theorem of perpendicular axis. 03
(b) Derive relation between bulk modulus (K), Poisson's ratio ($1 / \mathrm{m}$), and modulus 04of elasticity (E).
(c) A beam of I-section, having 5 m length is simply supported at each end and bears 07 a u.d.l. of $20 \mathrm{kN} / \mathrm{m}$ as shown in Fig. 3. Determine maximum shear stress.
Q. 5 (a) Define: (1) Centroid (2) Center of gravity (3) Center of mass. 03
(b) State and prove Pappu's guldinus theorem for surface area of bodies. 04
(c) Determine the location of centroid of plane lamina shown in Fig. 4 with respect 07to point O .
Q. 6 (a) Write assumption made in the theory of torsion. 03
(b) A solid steel shaft is to transmit 120 kW power at 600 r.p.m. Find the diameter 04of shaft if shear stress is to be limited to $100 \mathrm{~N} / \mathrm{mm}^{2}$.(c) Determine moment of inertia about base of a plane area as shown in Fig. 4.07
Q. 7 (a) Define : (i) Modulus of Elasticity (ii) Poisson's ratio(iii) Modulus of rigidity 03(b) In a tension test, a bar of 20 mm diameter undergoes elongation of 14 mm in agauge length of 150 mm and a decrease in diameter of 0.85 mm at a tensile loadof 6 kN . Determine the two physical constants Poisson's ratio and modulus ofelasticity of the material.
(c) A steel rod 30 mm in diameter is inserted inside a brass tube of 30 mm internal04 diameter and 40 mm external diameter, the ends are rigidly connected together. The assembly is heated by $20^{\circ} \mathrm{C}$. Find value and nature of stress developed in both the materials.
Take, α for steel $=12 \times 10^{-6}$ per ${ }^{\circ} \mathrm{C}, \alpha$ for brass $=18 \times 10^{-6}$ per $^{\circ} \mathrm{C}$. E for steel $=200 \mathrm{GPa}, \mathrm{E}$ for brass $=80 \mathrm{GPa}$,
Q. 8 (a) Define principal planes and principal stresses. 03
(b) A R.C.C. column 300 mm in dia. is reinforced with 6 nos. of 16 mm diameter 04steel bars. If permissible stress in steel and concrete are $230 \mathrm{~N} / \mathrm{mm}^{2}$ and 5$\mathrm{N} / \mathrm{mm}^{2}$, respectively, find the load carrying capacity of the column.
(c) The state of stress in two-dimensionally stress body at a point is shown in Fig.07
4. Determine principal stresses and maximum shear stress and its location of planes.

Fig-1.

Fig-4
Fig-3

Fig. 5

