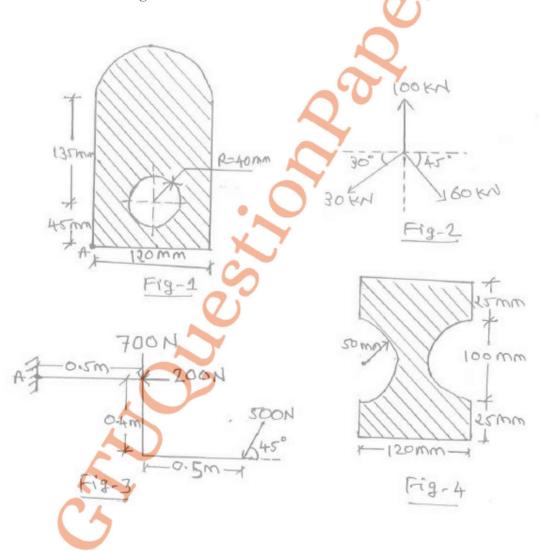
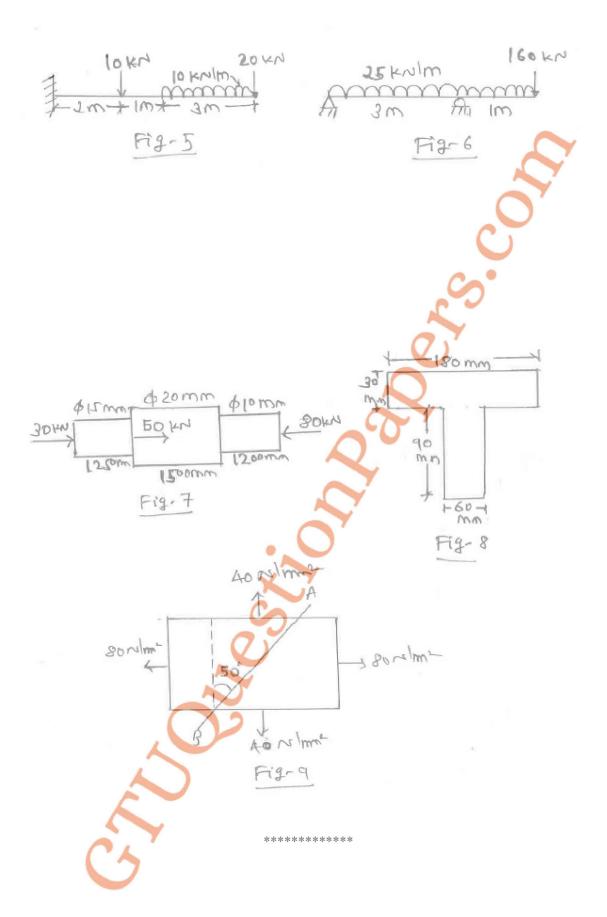
Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY


		BE - SEMESTER- III(NEW) EXAMINATION - WINTER 2022	
Subj	ect (Code:3130608 Date:01-03-202	23
Subj	ect]	Name:Mechanics of Solids	,
		:30 PM TO 05:00 PM Total Marks:	70
Instru			
		Attempt all questions. Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	
Q.1	(a)	Explain following terms (i) Rigid body (ii) Deformable body (iii) Elastic	03
Ų.1	(4)	body.	06
	(b)		04
	(c)	Determine the location of centroid of plane lamina shown in Figure 1 with	07
	(-)	respect to point A.	
Q.2	(a)	Write the assumptions made in the analysis of perfect truss.	03
	(b)	Find magnitude and direction of resultant for forces system as shown in	04
		Figure 2.	
	(c)	Replace the forces acting on the road by an equivalent single resultant force	07
		and couple system acting at point A for Figure 3.	
		OR	
	(c)	Find the I_{xx} and I_{yy} for section shown in Figure 4 .	07
Q.3	(a)	Explain: (i) Type of beams (ii) Type of loading on the beams.	03
	(b)		04
		stress at a section for a beam with rectangular cross section.	0.5
	(c)	Find support reaction and draw S.F.D and B.M.D for beam which is shown	07
		in Figure 5.	
0.3	(a)	OR Explain following terms: (i) Shoot force (ii) Bonding moment (iii) Boint of	0.2
Q.3	(a)	Explain following terms: (i) Shear force (ii) Bending moment (iii) Point of contra flexure.	US
	(b)	Find support reaction for beam which is shown in Figure 5.	04
	(c)	Find support reaction and draw S.F.D and B.M.D for beam which is shown	07
	(c)	in Figure 6.	U
		in riguic 0.	
Q.4	(a)	Explain assumptions made in theory of pure bending.	03
	(b)		04
	()	I section.	
	(c)	Determine deformation in each part of the bar ABCD shown in Figure 7.	07
	, ,	OR	
Q.4	(a)	Define stress, strain and poisson ratio.	03
	(b)	A solid circular shaft of 300 mm diameter has transmit 600 kW power at 200	04
		R.P.M. Calculate maximum shear stress in shaft material.	


- (c) A beam of T shaped cross section is shown in Figure 8. is subjected to 07 bending moment of 20 kN.m. Find the bending stress at the top and bottom of beam.
- Q.5 (a) Derive with usual notations the theorem of perpendicular axis.
- 03
- (b) Determine torque transmitted by hollow circular shaft of 100 mm external 04 diameter and 70 mm internal diameter if maximum shear stress is not exceed 80 N/mm².
- (c) A beam of T shaped cross section is shown in Figure 8. is subjected to shear 07 force of 50 kN. Find the maximum shear stress in section.

OR

Q.5 (a) Define principal planes and principal stresses.

- 03
- (b) A steel bar of rectangular cross-section 25 mm x 40 mm carries an axial 04 tension of 40 kN. Determine the average tensile stress in bar.
- (c) Determine normal and tangential stress on plane AB, in a strained material 07 shown in Figure 9.

