| Seat No.: | Enrolment No. |
|-----------|---------------|
|           |               |

## **GUJARAT TECHNOLOGICAL UNIVERSITY**

| <i>C</i> . |        | BE - SEMESTER-III(NEW) EXAMINATION - SUMMER 2023                                                                               |      |
|------------|--------|--------------------------------------------------------------------------------------------------------------------------------|------|
|            | · ·    | Code:3130608 Date:03-08-202                                                                                                    | 23   |
|            | -      | Name: Mechanics of Solids                                                                                                      |      |
|            |        | 2:30 PM TO 05:00 PM Total Marks:                                                                                               | 70   |
| Inst       | ructio |                                                                                                                                | ,7   |
|            | 2.     | Attempt all questions.  Make suitable assumptions wherever necessary.                                                          |      |
|            | 3.     |                                                                                                                                |      |
|            | 4.     | Simple and non-programmable scientific calculators are allowed.                                                                |      |
|            |        | $\mathbb{C}_{0}$                                                                                                               | Mark |
| Q.1        | (a)    | Explain free body diagram with neat sketch.                                                                                    | 03   |
|            | (b)    | Write various systems of forces and explain coplanar concurrent force system.                                                  | 04   |
|            | (c)    | Determine magnitude and direction of resultant force of the force system                                                       | 07   |
|            |        | shown in <b>Fig1</b> .                                                                                                         |      |
| Q.2        | (a)    | Write the assumption made in analysis of truss.                                                                                | 03   |
|            | (b)    | Define shear force and bending moment with sign conventions.                                                                   | 04   |
|            | (c)    | Determine magnitude, direction and position of resultant force of the force                                                    | 07   |
|            |        | system given in <b>Fig2</b> with reference to point A.                                                                         |      |
|            |        | OR C7                                                                                                                          |      |
|            | (c)    | Draw shear force and bending moment diagram for the beam shown in Fig3.                                                        | 07   |
| Q.3        | (a)    | Differentiate in-between centre of gravity & centroid.                                                                         | 03   |
|            | (b)    | Write equation of moment of inertia for rectangular section and triangular                                                     | 04   |
|            |        | section about its neutral axis and base of section.                                                                            |      |
|            | (c)    | Determine the centroid of the plane area shown in Fig4.  OR                                                                    | 07   |
| Q.3        | (a)    | Write assumption made in the theory of torsion.                                                                                | 03   |
|            | (b)    | Find out radius of gyration for square section. Consider side dimension is 'B'                                                 | 04   |
|            |        | mm.                                                                                                                            |      |
|            | (c)    | Find the moment of inertia about both centroidal axes of Z section as shown in                                                 | 07   |
|            |        | Fig5.                                                                                                                          |      |
| Q.4        | (a)    | Write assumptions made in theory of pure bending.                                                                              | 03   |
|            | (b)    | Draw shear stress distribution diagram for hollow rectangular, hollow circle                                                   | 04   |
|            |        | and H section.                                                                                                                 |      |
|            | (c)    | Calculate the diameter of the shaft required to transmit 45 kW at 120 rpm. The                                                 | 07   |
|            |        | maximum torque is likely to exceed the mean by 30% for a maximum                                                               |      |
|            |        | permissible shear stress of 55 N/mm <sup>2</sup> . Calculate also the angle of twist for a                                     |      |
|            |        | length of 2 m. $G = 80 \times 10^3 \text{ N/mm}^2$ .                                                                           |      |
| 0.4        | ( )    | OR                                                                                                                             | 0.2  |
| Q.4        | (a)    | Define composite beam and give main objectives of it.                                                                          | 03   |
|            | (b)    | A simply supported beam 300 mm x 600 mm of 6 m. span is subjected to UDL                                                       | 04   |
|            | (a)    | of 15 kN/m throughout the span. Find the maximum bending stress in the beam.                                                   | 07   |
|            | (c)    | Determine the shear stress at the junction of the flange & web of an 'I' section as shown in Fig6. Consider shear force 20 kN. | U/   |
|            |        | as shown in Figv. Consider shear force 20 kiv.                                                                                 |      |
| Q.5        | (a)    | Define with sketch (i) tensile stress (ii) compressive stress (iii) shear stress                                               | 03   |



(c) Determine the magnitudes & directions of principal stresses for two 07 dimensional body as shown in Fig.-7.

OR

Q.5 (a) Explain deformation of uniform bar section under self weight.

(b) Determine change in volume of a steel bar of 100 mm dia. and 500 mm length, when it is subjected to axial pull of 50 kN. Take Es = 200 GPa. & poission ratio 0.25.

(c) Calculate change in volume of a rectangular block 525 mm x 230 mm x 115 mm is subjected to load as shown in **Fig.-8**. Consider poission ratio 0.25 and E is 2 x 10<sup>5</sup> N/mm<sup>2</sup>.



04

03

