Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- IV EXAMINATION - SUMMER 2020 Subject Code: 3140610 Date:02/11/2020 **Subject Name: Complex Variables and Partial Differential Equations** Total Marks: 70 Time: 10:30 AM TO 01:00 PM **Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. Mark S Show that the function $u = x^2 - y^2$ is harmonic and find the Q.1 03 (a) corresponding analytic function. Find the fourth roots of -1. 04 **(b)** (i) Find the image of the infinite strip $0 \le x \le 1$ under the transformation 03 (c) w = iz + 1. Sketch the region. (ii) Write the function $f(z) = z + \frac{1}{z}$ in the form $f(z) = u(r,\theta) + iv(r,\theta)$. 04 Evaluate $\int (x^2 + ixy) dz$ from (1,1) to (2,4) along the curve $x = t, y = t^2$. 03 **O.2** (a) (b) Find the bilinear transformation which transforms z = 2,1,0 into 04 w = 1.0.i(c) 03 (i) Evaluate $\oint \frac{dz}{z^2 + 1}$, where C is |z + i| = 1, counter clockwise. (ii) Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} z^n$. 04 OR (i) Find the roots of the equation $z^2 + 2iz + (2-4i) = 0$. 03 **(c)** 04 (ii) Find the roots of log $z = i\frac{\pi}{2}$. Q.3 (a) Find $\oint_C \left(\frac{3}{z-i} - \frac{6}{(z-i)^2}\right) dz$, where C: |z| = 2. 03 **(b**) 04 Find the residues of $f(z) = \frac{1}{(z-1)^2(z-3)}$, has a pole at z = 3 and a pole of order 2 at z = 1. Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in a Laurent series for the regions (i)|z| < 107 (c) , (ii)1 < |z| < 3, (iii)|z| > 3. **Q.3** (a) Evaluate $\oint_C \frac{e^z}{z+i} dz$, where C: |z-1| = 1. 03 **(b)** 04 Evaluate by using Cauchy's residue theorem $\int_{c} \frac{5z-2}{z(z-1)} dz$; |z| = 2.

1

(c) Expand $f(z) = \frac{1}{(z+1)(z-2)}$ in Laurent's series for the regions (i)|z| < 1, (ii)1 < |z| < 2, (iii)|z| > 2.

Q.4	(a) (b)	Solve $yq - xp = z$. Derive partial differential equation by eliminating the arbitrary constants	03 04
	(0)	<i>a</i> and <i>b</i> from $z = (x^2 + a)(y^2 + b)$.	••
	(c)	(i) Solve the p.d.e. $r - 3as + 2a^2t = 0$. (ii) Find the complete integral of $p(1+q) = qz$.	03 04
Q.4	(a) (b)	Find the solution of $(y-z)p + (z-x)q = x - y$. Form the partial differential equation by eliminating the arbitrary function from $d(x + y + z + x^2 + y^2) = 0$.	03 04
	(c)	(i) Solve the p.d.e. $s + p - q = z + xy$.	03
		(ii) Solve by Charpit's method $q = 3p^2$.	04
Q.5	(a)	Solve $(D^2 + 2DD' + D'^2)z = e^{2x+3y}$	03
	(b)	Solve the p.d.e. $u_x = 4u_x$, $u(0, y) = 8e^{-3y}$ using the method of separation	04
		of variables.	
	(c)	Find the solution of the wave equation $u_{tt} = c^2 u_{xx}$, $0 \le x \le L$ with the	07
		conditions $u(0,t) = u(L,t) = 0; t > 0, \ u(x,0) = \frac{\pi x}{L}, u_t(x,0) = 0; 0 \le x \le L.$	
		OR	
Q.5	(a) (b)	Solve the p.d.e. $r + s + q - z = 0$.	03
	(D)	Solve $xu_x - 2yu_y = 0$ using the method of separation of variables.	04
	(C)	Find the solution of $u_t = c^2 u_{xx}$ together with the initial and boundary	07
Ċ		conditions $u(0,t) = u(l,t) = 0; t \ge 0$ and $u(x,0) = \sin \frac{\pi x}{l}; 0 \le x \le l$.	

2