\qquad
\qquad
GUJARAT TECHNOLOGICAL UNIVERSITY
BE- SEMESTER-IV (NEW) EXAMINATION - WINTER 2020Subject Code:3140603Date:11/02/2021
Subject Name:Structural Analysis-I Time:02:30 PM TO 04:30 PM Total Marks:56
Instructions:

1. Attempt any FOUR questions out of EIGHT questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Differentiate Plane frame and Grid 03
(b) State and explain principle of superposition. 04(c) Using Conjugate beam method, find the slope and deflection in terms of EI at07 free end of the cantilever beam shown in figure.

Q. 2 (a) Explain Maxwell's theorem of reciprocal deflections. 03
(b) Differentiate Conjugate beam and real beam 04
(c) Find slope at point A and B \& deflection at point C in terms of EI for the beam 07 shown in figure by Macaulay's method.

Q. 3 (a) Differentiate between long and short column 03(b) A masonry wall, 5 m high, is of solid rectangular section, 3 m wide and 1 m04thick. A horizontal wind pressure of $1.2 \mathrm{kN} / \mathrm{m}^{2}$ acts on the 3 m side. Find themaximum and minimum stress induced on the base, if unit weight of masonryis $22.4 \mathrm{kN} / \mathrm{m}^{3}$.
(c) A rectangular column section ABCD having $\mathrm{AB}=\mathrm{CD}=400 \mathrm{~mm}$ and $\mathrm{BC}=$ $\mathrm{AD}=300 \mathrm{~mm}$ carries a compressive load 300 kN at corner B. Find the stress at each corner A, B, C and D and draw stress - distribution diagram for each side.
Q. 4 (a) Discuss Stability checks for a dam.
(b) A "T" section is having flange with 100 mm and total depth 80 mm . The thickness of flange and web is 10 mm . The length of column is 3 m and it is hinged at both ends. If $\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, find Euler' buckling load.
(c) The external and internal diameter of a hollow cast iron column are 200 mm07 and 150 mm respectively. If column is hinged at both ends having a length of 4 m , determine the crippling load using Rankine formula. Take $\mathrm{f}_{\mathrm{s}}=$ $550 \mathrm{~N} / \mathrm{mm}^{2}$ and $\alpha=1 / 1600$.
Q. 5 (a) Explain advantages of three hinged arch over beam.
(b) Derive Euler's formula of critical load for column having both ends hinged
(c) A three hinged parabolic arch hinged at the support and at the crown has a span of 20 m and a central rise of 5 m . It carries a concentrated load of 120 kN at 15 m from left support and a uniformly distributed load $20 \mathrm{kN} / \mathrm{m}$ over left half portion. Determine the moment, thrust and radial shear at a section 4 m from left support.
Q. 6 (a) Define Core of the Section. Derive and locate the same for a Circular cross section
(b) A thin cylindrical shell of internal diameter d, wall thickness t and length I , is subjected to internal pressure p. Derive the expression for change in volume of the cylinder
(c) A thin cylindrical shell of 600 mm diameter is 1500 mm long and 10 mm thick. It is subjected to internal pressure of 2 MPa . Calculate the change diameter, length and volume. Take $\mathrm{E}=200 \mathrm{GPa}$ and poisson's ratio $=0.27$.
Q. 7 (a) State basic difference between fixed and simply supported beams.
(b) A fixed beam of 10 m span carries central point load of 100 kN . Find fixed end moment equation using area moment method.
(c) Using method of consistent deformation, analyze the propped cantilever beam shown in Figure, and draw shear force and bending moment diagrams.

Q. 8 (a) Define resilience, proof resilience and modulus of resilience. 03
(b) Derive formula for strain energy due to sudden loading.
(c) A steel bar 1 m length is subjected to a pull such that the maximum stress is equal to $150 \mathrm{~N} / \mathrm{mm}^{2}$. Its cross section is $200 \mathrm{~mm}^{2}$ over length of 950 mm and for the middle 50 mm length the sectional area is $100 \mathrm{~mm}^{2}$. If $\mathrm{E}=2 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}$, Calculate strain energy stored in the bar.
