GUJARAT TECHNOLOGICAL UNIVERSITY BE- SEMESTER-IV (NEW) EXAMINATION – WINTER 2020 Subject Code:3140610 Date:17/02/2021 Subject Name:Complex Variables and Partial Differential Equations Time:02:30 PM TO 04:30 PM Time:02:30 PM TO 04:30 PM Total Marks:56 Instructions: 1. Attempt any FOUR questions out of EIGHT questions. 2. Make suitable assumptions wherever necessary. Dimensional Marks: 50					
3.	Figu	res to the right indicate full marks.	Marks		
Q.1	(a) (b) (c)	Show that the function $u = x^3 - 3xy^2$ is harmonic. Find the fifth root of unity. (i) Determine and sketch the image of $ z = 1$ under the transformation	03 04 03		
		w = z + i. (ii) Find the real and imaginary parts of $f(z) = \frac{3i}{2+3i}$.	04		
Q.2	(a)	Evaluate $\int_{C} (x^2 - iy^2) dz$ along the parabola $y = 2x^2$ from (1,2) to (2,8)	03		
	(b)	Find the bilinear transformation that maps the points $z = \infty, i, 0$ into the points $w = 0, i, \infty$ respectively.	04		
	(c)	(i) Evaluate $\oint \frac{\sin 3z}{z + \pi/2} dz$ where C is the circle $ z = 5$.	03		
		(ii) For which values of z does the series $\sum_{n=0}^{\infty} n! z^n$ convergent?	04		
Q.3	(a)	Evaluate $\oint_C \frac{e^{-z}}{z+1} dz$ where C is the circle $ z = 1/2$.	03		
	(b)	Find the residue $Res(f(z), -1)$ for $f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+4)}$.	04		
	(c)	Expand $f(z) = \frac{1}{(z+2)(z+4)}$ in the region $(i) z < 2$, $(ii)2 < z < 4$, (iii) z > 4.	07		
Q.4	(a)	Evaluate $\oint_C \frac{2z+6}{z^2+4} dz$ where C is $ z-i = 2$.	03		
	(b)	Using Cauchy's Residue Theorem evaluate $\int_C \frac{e^{2z}}{(z+1)^3} dz$, where C is	04		
		the ellipse $4x^2 + 9y^2 = 16$.			

1

(c) Expand $\frac{1}{z(z^2-3z+2)}$ about z = 0 for the region (i)0 < |z| < 1, 07 (ii)1 < |z| < 2, (iii)|z| < 2.

Q.5	(a) (b) (c)	Solve $y^2 p - xyq = x(z - 2y)$. Derive p.d.e. by eliminating <i>a</i> and <i>b</i> from $z = (x - a)^2 + (y - b)^2$. (i) Solve $(D^3 - 3D^2D' + 2D'^3)z = 0$. (ii) Find the complete integral of $p^2 = qz$.	03 04 03 04
Q.6	(a) (b) (c)	Solve $x^2 p + y^2 q = z^2$. Form a p.d.e. by eliminating the arbitrary function from $z = f(x^2 - y^2)$. (i) Solve $(D - D' - 1)(D - D' - 2)z = e^{2x-y} + x$. (ii) Solve $(p^2 + q^2)y = qz$ by Charpit's method.	03 04 03 04
Q.7	(a) (b) (c)	Solve $2r - 5s + 2t = 24(y - x)$. Solve the p.d.e. $u_x + u_y = 2(x + y)u$. A tightly stretched string with fixed end points $x = 0$, $x = l$ is initially at rest in its equilibrium position. If it is set vibrating giving each point a velocity $\lambda x(l - x)$, find the displacement $u(x,t)$.	03 04 07
Q.8	(a) (b) (c)	Solve $(D^2 - D'^2 + D - D')z = 0$. Solve the p.d.e. $u_{xx} = 16u_y$. Find the solution of one dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ satisfying the conditions $u(0.t) = u(\pi, t) = 0$ for $t > 0$ and $u(x,0) = \pi - x, 0 < x < \pi$. *******	03 04 07