GUJARAT TECHNOLOGICAL UNIVERSITY

RE- SEMESTER-IV (NEW) EXAMINATION – WINTER 2020			
Subject Code:3140611 Date:19/02/2021			
Subject Name: Fluid Mechanics & Hydraulics			
Time:02:30 PM TO 04:30 PM Total Marks:56			
Instructions:			
	1.	Attempt any FOUR questions out of EIGHT questions.	
	2.	Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
01	(9)	Differentiate between liquid and gas	03
Q.1	(b)	For a liquid having mass 2000 kg and volume 2.5 m^3 , calculate mass density	04
	()	and weight density.	
	(c)	Enlist fluid properties. Explain any three of them.	07
Q.2	(a)	Differentiate between simple manometer and differential manometer.	03
	(b)	Explain Simple U- tube manometer in brief with sketch.	04
	(C)	State & prove Pascal's law.	07
03	(2)	Define Buoyancy Metacentric height and Archimedes principle	03
~	(b)	Find the volume of water displaced and position of centre of buoyancy for a	04
		wooden block of width 2.5 m and depth 1.5 m, when it floats horizontally on	
		water. The density of wooden block is 700 kg/m^3 and length is 5 m.	
	(c)	Derive an expression for the total pressure and position of centre of pressure on	07
		a plane surface immersed vertically in a liquid.	
04	(2)	Define Laminar flow Turbulent flow and Rotational flow	03
V	(b)	Differentiate between (i) Steady flow and Unsteady flow (ii) Uniform and Non	04
		uniform flow.	
	(c)	Explain Bernoulli's equation. What are the practical applications of Bernoulli's	07
		equation?	
o =			
Q.5	(a)	Define (1) Co efficient of contraction, (11) Co efficient of velocity, (11) Co	03
	(h)	Calculate the actual discharge and actual velocity of a jet at venacontracta	04
	(0)	considering the $C_d = 0.6$ and $C_v = 0.98$ for an orifice of 40 mm diameter, if the	04
		head over the orifice is 9 m.	
	(c)	Classify different types of orifices according to its shapes, size, discharge	07
		condition and shape of upstream edge. Explain all in brief.	
	9		
Q.6	(a)	Define (1) Hydraulic grade line, (11) Total energy line, (11) Equivalent pipe.	03
	(D)	are 10 cm 20 cm and 30 cm respectively and they are of same lengths. If the	04
		discharge through 10 cm pipe is $0.1 \text{ m}^3/\text{s}$ calculate discharge through the other	
		two pipes. Assume f is same for both pipes.	
	(c)	Derive Darcy–weisbach equation for friction loss in the pipe.	07
Q.7	(a)	Define (i) Hydraulic mean depth, (ii) Wetted perimeter, (iii) Critical velocity.	03
	(b)	Find the width and depth of a rectangular channel to convey a discharge of 1.5 m^{3}/a at a value ity of 0.5 m/a . Take Charge's constant a result to Convert 1.1	04
		equal to 0.00012.	

- Derive the geometrical conditions for the most economical section of a 07 (c) trapezoidal channel.
- Define (i) Reynolds's number, (ii) Froude's number (iii) Euler's number. **Q.8** 03 (a)
 - What is Dimensional Homogeneity? What are the applications of Dimensional **(b)** 04 Homogeneity?
- The resisting force R of a supersonic plane during flight can be considered as 07 (c) dependent upon the length of aircraft l, velocity V, air viscosity μ , air density p ela and bulk modulus of air K. Express the functional relationship between these variables using Buckingham's π - theorem.