\qquad
\qquad
GUJARAT TECHNOLOGICAL UNIVERSITY
BE- SEMESTER-IV (NEW) EXAMINATION - WINTER 2020
Subject Code:3140611Date:19/02/2021
Subject Name:Fluid Mechanics \& Hydraulics Time:02:30 PM TO 04:30 PM
Instructions:

1. Attempt any FOUR questions out of EIGHT questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Differentiate between liquid and gas. 03
(b) For a liquid having mass 2000 kg and volume $2.5 \mathrm{~m}^{3}$, calculate mass density 04 and weight density.(c) Enlist fluid properties. Explain any three of them.07
Q. 2 (a) Differentiate between simple manometer and differential manometer. 03
(b) Explain Simple U- tube manometer in brief with sketch. 04
(c) State \& prove Pascal's law. 07
Q. 3 (a) Define Buoyancy, Metacentric height and Archimedes principle. 03
(b) Find the volume of water displaced and position of centre of buoyancy for a 04wooden block of width 2.5 m and depth 1.5 m , when it floats horizontally onwater. The density of wooden block is $700 \mathrm{~kg} / \mathrm{m}^{3}$ and length is 5 m .
(c) Derive an expression for the total pressure and position of centre of pressure on 07 a plane surface immersed vertically in a liquid.
Q. 4 (a) Define Laminar flow, Turbulent flow and Rotational flow. 03
(b) Differentiate between (i) Steady flow and Unsteady flow (ii) Uniform and Non 04 uniform flow.
(c) Explain Bernoulli's equation. What are the practical applications of Bernoulli's 07 equation?
Q. 5 (a) Define (i) Co efficient of contraction, (ii) Co efficient of velocity, (iii) Co 03 efficient of discharge.
(b) Calculate the actual discharge and actual velocity of a jet at venacontracta 04 considering the $C_{d}=0.6$ and $C_{v}=0.98$ for an orifice of 40 mm diameter, if the head over the orifice is 9 m .
(c) Classify different types of orifices according to its shapes, size, discharge07condition and shape of upstream edge. Explain all in brief.
Q. 6 (a) Define (i) Hydraulic grade line, (ii) Total energy line, (iii) Equivalent pipe. 03
(b) Two reservoirs are connected by three pipes laid in parallel. The pipe diameters 04are $10 \mathrm{~cm}, 20 \mathrm{~cm}$ and 30 cm respectively and they are of same lengths. If thedischarge through 10 cm pipe is $0.1 \mathrm{~m}^{3} / \mathrm{s}$, calculate discharge through the othertwo pipes. Assume f is same for both pipes.(c) Derive Darcy-weisbach equation for friction loss in the pipe.07
Q. 7 (a) Define (i) Hydraulic mean depth, (ii) Wetted perimeter, (iii) Critical velocity. 03
(b) Find the width and depth of a rectangular channel to convey a discharge of 1.5 04$\mathrm{m}^{3} / \mathrm{s}$ at a velocity of $0.5 \mathrm{~m} / \mathrm{s}$. Take Chezy's constant equal to 60 and bed slopeequal to 0.00012 .
(c) Derive the geometrical conditions for the most economical section of a $\mathbf{0 7}$ trapezoidal channel.
Q. 8 (a) Define (i) Reynolds's number, (ii) Froude's number (iii) Euler's number.
(b) What is Dimensional Homogeneity? What are the applications of Dimensional Homogeneity?
(c) The resisting force R of a supersonic plane during flight can be considered as 07 dependent upon the length of aircraft 1 , velocity V , air viscosity μ, air density p and bulk modulus of air K. Express the functional relationship between these variables using Buckingham's π - theorem.
