~	3 T	
Seat	10.	
Dual	INU	

Enrolment No.

	GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV (NEW) EXAMINATION – SUMMER 2021	
	Date:04/09/2021	
•	ect Name:Structural Analysis-I :02:30 PM TO 05:00 PM Total Marks:70	
institut	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed. 	
Q.1	(a) Define statically determinate and indeterminate structures.	03
	(b) Explain Maxwell's theorem of reciprocal deflections.	04
	(c) Draw shear force, bending moment and axial force diagram for the rigid jointed	07
	frame shown in figure :1	
Q.2	(a) What are the temperature effect on three hinge Arch?	03
	(b) A cable is suspended between two points at the same levels having span 120 m	04
	and central dip 0f 12 m. The cable carries an ULD of 2 kN/m on its horizontal	
	span .Calculate the change in horizontal tension if temperature rises by 20°C.	
	Take $\alpha = 12 \times 10^{-6}/C$.	
	(c) A thin cylindrical shellof internal diameter d and wall thickness t,length l, is	07
	subjected to internal pressure p, Derive the expression for change in volume of	
	the cylinder.	
	OR	
	(c) Write steps for moment distribution method.	07
Q.3	(a) What is Elastic strain energy.	03
	(b) Explain energy due to Shear Loading.	04
	(c) A simply supported beam AB of span 5m carries a uniformly distributed load of	07
	$5kN/m$ over its span. Determine the strain energy stored due to bending in the beam. Take E=200 GPa,I = $200cm^4$.	
	OR	
Q.3 /	(a) Explain Moment -area theorem 2.	03

Q.3 (a) Explain Moment -area theorem 2.

(b) Derive the relation between slope, Deflection and Radius of Curvature.

04

	(c) Calculate slope and deflection at point A, for a beam loaded as shown in figure :	07		
	2. $I = 3 \times 10^7 \text{mm}4$.			
Q.4	(a) Explain limit of ecentricity and core of a section.	03		
	(b) What is conjugate beam? Differentiate between real beam and conjugate beam.	04		
	Justify the support condition in conjugate beam.			
	(c) A circular column 450 mm in diameter carries a load of 700 kN at an eccentricity 07			
	of 100 mm. Calculate maximum and minimum atresses for the column.			
	OR			
Q.4	(a) Define (a) Axial load (b) Eccentricity (c) Core of a section	03		
	(b) Define coefficient of Wind resistance.	04		
	(c) A rectangular retaining wall is 7.2m high retains water up to 6 m on its	07		
	One side .The density of wall material and water is 23.5 kN/m ³ and 10 k			
	kN/m ³ respectively .Find minimum base width required to avoid			
	tension at base.			
Q.5	(a) State assumptions of Euler's formula.	03		
	(b) Differentiate between column and strut.	04		
	(c) A T section is having flange with 100mm and total depth 80 mm. The thickness	07		
	of flange and web is 10 mm. The length of column is 3m and it is hinged at both			
	ends. If $E = 2.1 \times 10^5 \text{ N/mm}^2$, find Euler'buckling load.			
	OR			
Q.5	(a) What are the advantages and disadvantages of fixed beam.	03		
	(b) A fixed beam carries an UDL 'w' kN/m over entire span . Support 'B' settle by ' $^\delta$	' 04		
	,so that there is nofixed and moment at B.			
	(c) Find the fixing moments and end reation for a fixed beam shown in figure.3.	07		
