Seat No.:	Enrolment No.
Deat 110	Emonitent 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION - SUMMER 2021

Subject Code 21/0610		Data:07/00/2021
Subject Code:3140610		Date:07/09/2021
J		

Subject Name: Complex Variables and Partial Differential Equations

Time:02:30 PM TO 05:00 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

		4. Simple and non-programmable scientific calculators are allowed.	
		Co	Mark
Q.1	(a)	Find the real and imaginary parts of $f(z) = iz + 2\bar{z}$.	03
	(b)	State De-Movire's formula and evaluate $(1+i)^{96} + (1-i)^{96}$.	04
	(c)	Define analytic function. Show that $u(x,y) = x^2 - y^2 - y$ is harmonic function, find a harmonic conjugate $v(x,y)$.	07
Q.2	(a)	Find the image of the region $ z < 2$ under the transformation $w = 3z + i$.	03
	(b) (c)	Find all solution of $sinz = 2$.	04 07
	(c)	Expand $f(z) = \frac{1}{(z+4)(z+2)}$ valid for the region	07
		(i) $ z < 2$ (ii) $2 < z < 4$ (iii) $ z > 4$.	
	(c)	Determine the Mobius transformation which maps $z_1 = -1$, $z_2 = i$, $z_3 = 1$ into $w_1 = 0$, $w_2 = i$, $w_3 = \infty$. Hence, find the image of $ z < 1$.	07
Q.3	(a)	Check whether the function $f(z) = x^2 + y^2 - i2xy$ is analytic or not.	03
	(b)	Evaluate $\oint_C \frac{e^z}{z(z-1)} dz$ around the circle $C: z = 2$.	04
	(c)	Evaluate the followings:	07
	(c)	(i) $\int_C \frac{\cos \pi z^2}{(z-2)(z-1)} dz$, counter clockwise around the circle $C: z =3$.	07
		(ii) $\int_C \frac{dz}{z^2+4}$, where C is the unit circle.	
Q.3	(a)	Show that the function $f(z) = \bar{z}$ is nowhere differentiable.	03
Q.J	(b)	Expand $f(z) = z^2 \exp\left(\frac{1}{z}\right)$ in Laurent's series about $z = 0$ and classify the	04
		singularity.	
	(c)	Using residue theorem, evaluate $\int_0^{2\pi} \frac{d\theta}{5-3\sin\theta}$.	07
Q.4	(a)		03
Ų.4	(a)	Find the value of $\int_0^{1+i} (\bar{z})^2 dz$ along the line $y = x$.	
	(b)	Solve the partial differential equation $(D^2 - 3DD' + 2D'^2)z = \sin(x + 2y)$.	04
	(c)	Obtain the complete integral of the followings: (i) $q - p + x - y = 0$.	07
		(ii) $q^2 = z^2 p^2 (1 - p^2)$.	
		OR	

Classify the Partial differential equation $\frac{\partial^2 u}{\partial x^2} + 7 \frac{\partial^2 u}{\partial x \partial y} + 9 \frac{\partial^2 u}{\partial y^2} = 0$.

03

	(b)	Solve $(x^2 - yz)p + (y^2 - xz)q = z^2 - xy$.
	(c)	Find the general solution of the partial differential equation $\frac{\partial^2 u}{\partial x^2} = 25 \frac{\partial^2 u}{\partial y^2}$ by method
0.5	(-)	of separation of variables.
Q.5	(a) (b)	Solve $px + qy = 3z$. Using Charpit's method, solve $q = 3p^2$.
	(c)	A tightly stretched string with fixed end points at $x = 0$ and $x = 20$ is initially given
		by the deflection $f(x) = kx(20 - x)$. If it is released from this position, then find the deflection of the string.
		OR
Q.5	(a)	Solve $2\frac{\partial^2 z}{\partial z^2} + 5\frac{\partial^2 z}{\partial z^2} + 2\frac{\partial^2 z}{\partial z^2} = 0$
	(b)	Solve $2\frac{\partial^2 z}{\partial x^2} + 5\frac{\partial^2 z}{\partial x \partial y} + 2\frac{\partial^2 z}{\partial y^2} = 0$. Solve $\frac{\partial^2 z}{\partial x^2} + z = 0$, given that when $x = 0$, $z = e^y$ and $\frac{\partial z}{\partial x} = y$.
	(c)	Solve $\frac{\partial}{\partial x^2} + z = 0$, given that when $x = 0$, $z = e^y$ and $\frac{\partial}{\partial x} = y$. A rod of 30 cm long has its ends A and B are kept at 20°C and 80°C respectively
	(c)	until steady state conditions prevail. The temperature at each end is suddenly
		reduced to 0° C and kept so. Find the resulting temperature $u(x, t)$ from the end A .

	A	
	2	
4		