Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

GUJAKAT TECHNOLOGICAL UNIVI	
BE - SEMESTER-IV (NEW) EXAMINATION - SUM	MER 2021
Subject Code:3140611	Date:08/09/2021
Subject Name: Fluid Mechanics & Hydraulics	
Time:02:30 PM TO 05:00 PM	Total Marks: 70
Instructions:	
1. Attempt all questions.	
2. Make suitable assumptions wherever necessary.	
3. Figures to the right indicate full marks.	
4. Simple and non-programmable scientific calculators are allow	
	MAR

		simple and non-programmable scientific calculators are anowed.	MARKS	
0.1	()			
Q.1	(a)	Define fluid, Specific gravity, Mass density	03	
	(b)	Define viscosity and differentiate between kinematic and dynamic viscosity	04	
		its ap	0.7	
	(c)	Define surface tension. Prove the relationship between surface tension and inside a droplet of liquid in excess of outside property is given by $r = 4\pi/d$	07	
		inside a droplet of liquid in excess of outside pressure is given by $p = 4\sigma/d$.		
Q.2	(a)	Describe the terms atmospheric, absolute, gage and vaccum pressure with	03	
Q.2	(a)	sketch	05	
	(b)	Classify various manometers	04	
	(c)	State Pascal's law and give some examples where this principle is applied	07	
		OR		
	(c)	Explain hydrostatic paradox with suitable demonstration	07	
Q.3	(a)	Classify fluid flows.	03	
	(b)	The velocity potential function is given by $\phi = 5(x^2 - y^2)$. Calculate the velocity	04	
		components at the point (4, 5)	2	
	(c)	Explain flow net & Reynolds experiment.	07	
0.2	(-)	OR	0.2	
Q.3	(a)	Explain the term 'Total Pressure and Centre of Pressure'. Derive Euler's equation of motion along a stream line.	03 04	
	(b) (c)	A horizontal pipe carrying water of 20 cm diameter converges to 10cm	07	
	(c)	diameter. If the pressures at two sections are 450 KN/m ² and 150 KN/m ²	07	
		respectively. Compute the rate of flow of water.		
Q.4	(a)	Discuss stability of submerged and floating bodies with neat sketches	03	
	(b)	Explain the different hydraulic & mouth piece.	04	
	(c)	Derive the expression for discharge over the (1) Rectangular notch and (2)	07	
		Triangular notch		
OR				
Q.4	(a)	Explain the phenomenon of water hammer	03	
	(b)	What is pitot-tube? How the velocity at any point is determined with the help	04	
	(c)	of pitot-tube. What is venturimeter. Derive an expression for the discharge Through a	07	
	(c)	venturimeter. Derive an expression for the discharge Through a venturimeter.	0 /	
Q.5	(a)	Define continuity equation & derive it.	03	
V. 0	(b)	What are repeating variables? How are they selected for dimensional analysis?	04	
	(c)	Derive an expression for the loss of head due to friction in pipes.	07	
OR				
Q.5	(a)	Explain viscous flow.	03	
1	(b)		04	
1		depth		
^	(c)	State Buckingham's π theorem. Why it is considered superior over Rayleigh	07	
		method for dimension analysis.		
