Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION – WINTER 2021

Subject Code:3140610 Date:24/12/2021

Subject Name: Complex Variables and Partial Differential Equations
Time: 10:30 AM TO 01:00 PM
Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

residue at each pole.

Hence evaluate $\oint_c f(z)$ where c is the circle |z|=3. (a) Solve $z^2(p^2z^2+q^2)=1$

4. Simple and non-programmable scientific calculators are allowed.

			MARKS
Q.1	(a)	Prove that $i^{i} = e^{-(4n+1)\frac{\pi}{2}}$	03
	(b)		04
	(c)	State DE MOIVRE'S Theorem and Find the fifth root of unity	07
Q.2	(a)	Prove that $\sinh^{-1} x = \log(x + \sqrt{x^2 + 1})$	03
	(b)	Show that $f(z) = \frac{Re(z^2)}{ z }, z \neq 0$	04
	(c)	=0 , z =0 Is continuous at z=0. State Necessary condition for function to be analytic and Show that neither $f(z)=\bar{z}$ nor $f(z)= z $ is an analytic function.	07
	()	OR	0.7
	(c)	Using Residue Evaluate $\int_0^\infty \frac{x^2 dx}{(x^2+1)(x^2+4)}$.	07
Q.3	(a)	Evaluate $\int_{c} (x^2 - iy^2) dz$ along the parabola y=2x ² from	03
	(b)	(1,2) to (2,8) Discuss the convergence of the series. $\sum_{n=0}^{\infty} \frac{(2n)!(z-3i)^n}{(n!)^2}$	04
	(c)	State Cauchy Integral Formula and evaluate $\int_{c}^{\infty} \frac{z-1}{(z+1)^{2}(z-2)}$	07
		dz, where c is the circle $ z - i = 2$	
Q.3	(a)	Expand $f(z) = \frac{z - sinz}{z^2}$ at z=0, classify the singular point z=0.	03
_	(b)	Define Mobius Transformation which maps $z=0.i,1$ into $w=i,-1,\infty$	04
	(c)	Determine the poles of the function $f(z) = \frac{Z^2}{(Z-1)^2(Z+2)}$ and	07

03

Solve x(y-z)p+y(z-x)q=z(x-y)04 Using method of separation of variable solve $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$, 07 where $u(x,0)=6e^{-3x}$ OR (a) Solve $q=3p^2$ by Charpit method 03 0.4 **(b)** Solve $(D^2+10DD'+25D'^2)Z = e^{3x+2y}$ 04 (c) A tightly stretched string with fixed end points x=0 and x=107 is initially in the equilibrium position. If it is set vibrating by giving to each of its points Q, a velocity of $v_0 sin^3 \frac{\pi x}{l}$ Find the displacement y(x,t). **Q.5** (a) Form a partial differential equation by eliminating arbitrary 03 function $xyz = \emptyset(x + y + z)$ Classify the following partial differential equation 04 1) $2\frac{\partial^2 u}{\partial x^2} + 4\frac{\partial^2 u}{\partial x \partial y} + 3\frac{\partial^2 u}{\partial y^2} = 6$ 2) $\frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + 4 \frac{\partial^2 u}{\partial y^2} = 0$ (c) Find the solution of wave equation $\frac{\partial^2 u}{\partial t^2}$ 07 $0 \le x \le L$ satisfying the condition u(0,t)=u(L,t)=0 $u_t(x,0)=0, u(x,0)=\frac{\pi x}{L}. 0 \le X \le L$ (a) Solve $\frac{\partial^2 z}{\partial x^2} = z$ 0.5 03 (b) Find the solution of $u_t = c^2 u_{xx}$ together with the initial and 04 boundary conditions u(0,t)=u(1,t)=0 for all $t \ge 0$ and u(x,0) $=\sin\frac{\pi x}{l}, \le x \le l$ (c) A rod 30 cm long has its end A and B Kept at 20° and 80° 07 c respectively until steady state condition prevail. The temperature at each end is then suddenly reduced to 0° kept so. Find the resulting temperature function u(x,t) from the end A.
