Total Marks: 70

03

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION - SUMMER 2022

Subject Code:3140603 Date:27-06-2022

Subject Name: Structural Analysis-I

Time:10:30 AM TO 01:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.
- Q.1 (a) Define resilience, proof resilience and modulus of resilience.
 - (b) Differentiate conjugate beam and real beam 04
 - (c) A short column rectangular section 250 mm x 200 mm is subjected to load of 400 kN at a point 50 mm from longer side and 100 mm from shorter side. Find maximum and minimum stress in the column.
- Q.2 (a) Derive Euler's formula of critical load for column having both ends hinged 03
 - (b) Explain Maxwell's theorem of reciprocal deflections. 04
 - (c) Using conjugate beam method, find the slope and deflection at point B in terms of EI of the cantilever beam shown in figure.

(c) Using moment area method, find slope & deflection at point C in terms of EI 07 for the beam shown in figure.

- Q.3 (a) State Moment area theorems I and II
 - (b) Determine degree of redundancy of simply supported beam, cantilever beam 04 and propped cantilever beam.
 - (c) Find slope at point A and B & deflection at point C for the beam shown in figure. Take $EI = 3000 \text{ kN.m}^2$.

OR

Q.3 (a) Discuss stability checks for a dam.

03

	(b)	A cable loaded with 10 kN/m is stretched between two supports in the same horizontal line 200 m apart. If the central dip is 15 m, find the support reaction.	04
	(c)	A three hinged circular arch hinged at the support and at the crown has a span of 20 m and a central rise of 4 m. It carries a concentrated load of 120 kN at 6 m from left support. Determine the moment under point load and at 6 m from right support.	07
		nom right support.	
Q.4	(a)	Define Core of the section. Derive and locate the same for a Circular cross section.	03
	(b)	Define and explain: Kernel of rectangular section.	04
	(c)	A cylindrical shell has 3.5 m length, 1.2 m diameter and 10 mm thickness, the	07
		shell is subjected to internal pressure of 2 N/mm ² . Calculate the maximum	
		shear and change in dimension of the shell.	
		OR	
Q.4	(a)	Explain Arch and Cable.	03
	(b)	Write difference between strut and column.	04
	(c)	A column has one end fixed and other end hinged with length of 6.0 m. It is	07
		made up of a tube having external diameter of 100 mm and wall thickness of	
		10 mm. If yield strength of the material is 410 N/mm ² and Rankine constant is 1/4800, calculate Euler's critical load and Rankine's critical load.	
		is 1/4800, calculate Euler's critical load and Kankine's critical load.	
Q.5	(a)	State assumptions and limitations of Euler's formula	03
Q.5	(a) (b)	Derive formula for strain energy due to gradually applied loading.	03
	(c)	Using method of consistent deformation, analyse the propped cantilever beam	07
	(c)	shown in Figure, and draw shear force and bending moment diagrams. Choose	07
		$V_{\rm B}$ as a redundant.	
		20 KM 40 KM	
		2m 2m 2m	
		777	
		OR	
Q.5	(a)	State advantages of fixed beam over simply supported beam.	03
	(b)	A fixed beam of 5 m span carries central uniformly distributed load of 10	04
		kN/m on entire span. Find fixed end moment equation using area moment	
		method.	
	(c)	A small concrete dam, triangular in cross section with one face vertical, is 8	07
		m high and 3 m wide at base. It has to retain water on one face up to a depth	
-		7 m. If unit weight of concrete is 25 kN/m ³ and that of water 10 kN/m ³ ,	

also stress distribution diagram under the base of dam.

calculate maximum and minimum stress intensity induced at the base. Sketch