Seat No.:	nrolment No.
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION – SUMMER 2022 bject Code:3140610 Date:02-07-2022

Subject Code:3140610 Date:02-0 Subject Name:Complex Variables and Partial Differential Equations

Time: 10:30 AM TO 01:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Q.1 (a) Find an analytic function f(z) = u + iv if u = x³ - 3xy. (b) Find the fourth roots of -1. (c) (i) Find the image of infinite strip 0 ≤ x ≤ 1 under the transformation w = iz + 1. (ii) Separate real and imaginary parts of f(z) = z². Q.2 (a) Evaluate ∫(x² + ixy) dz from (1, 1) to (2, 4) along the curve x = t, y = t² Q.3

Q.2 (a) Evaluate
$$\int_C (x^2 + ixy) dz$$
 from (1, 1) to (2, 4) along the curve $x = t, y = t^2$. 03
(b) Determine the mobius transformation that maps $z_1 = 0, z_2 = 1, z_3 = \infty$ 04

onto
$$w_1 = -1$$
, $w_2 = -i$, $w_3 = 1$ respectively.
(c) (i) Evaluate $\oint_C \frac{e^z}{z(1-z)^3} dz$, where C is $|z| = \frac{1}{2}$.

(ii) Find the radii of convergence of
$$\sum_{n=1}^{\infty} \frac{z^n}{2^n + 1}$$
.

(c) Find the image of
$$|z-1| = 1$$
 under the mapping $w = \frac{1}{z}$.

Q.3 (a) Evaluate
$$\oint_C \frac{e^{2z}}{(z+1)^4} dz$$
, where C is the circle $|z| = 2$.

(b) Find Re
$$s(f(z),4i)$$
, where $f(z) = \frac{z}{z^2 + 16}$.

(c) Expand
$$f(z) = \frac{1}{(z-1)(z+2)}$$
 in Laurent's series in the region $(i)|z| < 1, (ii)1 < |z| < 2, (iii)|z| > 2.$

OR

Q.3 (a) Evaluate
$$\oint_C (x^2 - y^2 + 2ixy) dz$$
, where C is the circle $|z| = 1$.

(b) Evaluate
$$P.V. \int_{-\infty}^{\infty} \frac{x \cos x}{x^2 + 9} dx$$
.

(c) Find Laurent's series that represent
$$f(z) = \frac{1}{z(z-1)}$$
 in the region $(i)0 < |z| < 1, (ii)0 < |z-1| < 1.$

Q.4	(a)	Solve $\frac{y-z}{vz}p + \frac{z-x}{zx}q = \frac{x-y}{xy}$.	03
	(b)	Derive partial differential equation by eliminating arbitrary constants a and b from $z = (x + a)(y + b)$.	04
	(c)	(i) Solve $\frac{\partial^3 z}{\partial x^3} = 0$.	03
		(ii) Find complete integral of $p^2 + q^2 = z$.	04
		OR	
Q.4	(a)	Solve $xp + yq = x - y$.	03
	(b)	Form a partial differential equation by eliminating arbitrary function from $z = f(x/y)$.	04
	(c)	(i) Solve $(D^2 - D'^2 + D - D')z = 0$.	03
		(ii) Solve $q = 3p^2$ by Charpit's method.	04
0.5	(a)	Solve $(r+3s+2t) = x + y$	03
V.			
	(D)	Solve the p.d.e. $u_{xy} = -u_x$.	04
	(c)	Find the deflection $u(x,t)$ of the vibrating string of length π and ends	07
		fixed, corresponding to zero velocity and initial deflection $f(x) = k(\sin x - \sin 2x)$.	
Q.5	(a)	Solve $(D^2 + DD' + D' - 1)z = \sin(x + 2y)$.	03
V.0			
	(b)	Solve the p.d.e. $u_x + u_y = 2(x + y)u$.	04

u(0,t) = u(l,t) = 0 for all $t \ge 0$ and $u(x,0) = \sin \frac{\pi x}{l}$,

(c) Find the solution of $u_t = c^2 u_{xx}$ together with the initial and boundary

conditions

 $0 \le x \le l$.

07