Seat No.:	Enrolment No.
Seat No.:	Ellfollilent No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION - SUMMER 2022

C 1 ·		DE - SEMESTER-IV (NEW) EXAMINATION - SUMMER 2022	7.000
		Code:3140611 Date:04-0	17-2022
Subj	ect]	Name:Fluid Mechanics & Hydraulics	
Time	:10	:30 AM TO 01:00 PM	rks: 70
Instru			
		Attempt all questions.	
		Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	MARKS
Q.1	(a)		03
	(b)		04
		of liquid which weighs 7 N.	
	(c)	Write about different types of fluid in detail with example.	07
	(c)	write about different types of fluid in detail with example.	07
Q.2	(a)	Differentiate between Piezometer and U-tube manometer	03
Q.2	(b)		04
	(6)	direction must be equal to the specific weight of the fluid at that point.	04
	(c)		07
	(0)	pipes as shown in Fig.1. The pipe A contains a liquid of sp.gr. = 1.5	0,
		while pipe B contains a liquid of sp.gr.= 0.9. The pressures at A and B	
		are $1 \text{kgf/}cm^2$ and 1.8 $\text{kfg/}cm^2$ respectively. Find the difference in	
		mercury level in the differential manometer.	
		OR	
	(c)	State and Prove Pascal's Law.	07
Q.3	(a)		03
	(b)	Derive an expression for Centre of Pressure by using "Principle of	04
		Moments"	
	(c)		07
		at the centre of the pipe is 19.6 N/cm^2 . If the pipe is filled with oil of	
		sp.gr. 0.87, find the force exerted by the oil upon the gate and position	
		of centre of pressure.	
0.0		OR	0.2
Q.3	(a)		03
	(b)		04
	(-)	velocity at the point $(3, 2)$. Find the corresponding velocity potential Φ .	0.7
	(c)	Define flow net and write in detail characteristics, applications and	07
		limitations of flow net.	
0.4	(a)	Explain Venturimeter and parts of Venturimeter with diagram.	03
Ų.T	(b)		04
1	(n)	rate of flow of oil in a pipe of 300 mm diameter. The manometer shows	UT
A		a pressure difference of 40 cm of mercury. Find the rate of flow of oil	
		through pipe if sp.gr of oil is 0.8. Take coefficient of discharge for meter	
	1	= 0.60	
, 1	(c)		07
		different arrangement to know the static pressure head h.	
		OR	
Q.4	(a)	Enlist minor losses in flow through pipes.	03

	(b)	Calculate the discharge through a pipe of diameter 250 mm when the difference of pressure head between the two ends of a pipe 500 m apart is 3.5 m of water. Take value of friction factor = 0.04	04
	(c)	Derive Darcy–Weisbach equation for friction loss in the pipe.	07
Q.5	(a)	Define (i) Prismatic channel (ii) Gradually varied flow (iii) Wetted perimeter	03
	(b)	An irrigation lined canal of trapezoidal section has to carry a discharge of 12 cumec at a longitudinal slope of 0.00048 . Find the dimensions of most economical section if channel has side slope of 3 horizontal to 2 vertical. Take Manning's constant $n = 0.013$.	04
	(c)	Derive the geometrical conditions for the most economical section of a triangular channel.	07
		OR _	
Q.5	(a)	Define (i) Reynold's number (ii) Mach number (iii) Weber number	03
	(b)	Write in detail about (i) Geometric similarity (ii) Kinematic similarity	04
	(c)	The efficiency η of a fan depends on the density ρ , dynamic viscosity μ ,	07
		the angular velocity ω, Diameter D of the rotor and the discharge Q.	
		Express η in terms of dimensionless parameters.	

