Seat No.:	Enrolment No.
-----------	---------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV(NEW) EXAMINATION - WINTER 2022

Subject Code:3140610	Date:16-12-2022
Subject Name Complex Variables	and Partial Differential Equations

Total Marks:70 Time:10:30 AM TO 01:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

	4.	Simple and non-programmable scientific calculators are allowed.		
		Co.	Marks	
Q.1	(a)	Find the real and imaginary parts of $f(z) = z^2 + \bar{z}$.	03	
	(b)	Evaluate $(1 + i\sqrt{3})^{60} + (1 - i\sqrt{3})^{60}$.	04	
	(c)	Define Harmonic function. Show that $u(x, y) = \sin z$ is analytic everywhere. Also, find $f'(z)$.	07	
Q.2	(a)	Find the image of the region $ z > 2$ under the transformation $w = 4z$	03	
	(b)	Find all solution of $e^z = 1 + i$.	04	
	(c)	Expand $f(z) = \frac{1}{(z-2)(z-3)}$ valid for the region	07	
		(i) $ z < 2$ (ii) $2 < z < 3$ (iii) $ z > 3$.		
	(c)	Show that $u(x, y) = y^3 - 3x^2y$ is harmonic in some domain D and	07	
		find the conjugate $v(x, y)$		
Q.3	(a)	Check whether the function $f(z) = xy + iy$ is analytic or not at any	03	
ν.υ	(4)	point.	00	
	(b)	Evaluate $\oint_C \frac{\cos z}{(z-1)(z-2)} dz$ around the circle $C: z = 3$.	04	
	(c)		07	
		(i) $\int_C \frac{2z+3}{z^2-4} dz$, counter clockwise around the circle $C: z-2 =1$.		
		(ii) $\int_C \frac{e^z+z}{z^2-1} dz$, where C $C: z =2$		
		OR		
Q.3	(a)	Expand $f(z) = \frac{\cos z}{z^2}$ in Laurent's series about $z = 0$ and identify the	03	
		singularity.	0.4	
	(b)	Determine the bilinear transformation which maps the points $0, \infty, i$ into $\infty, 1, 0$	04	
	(c)	$c2\pi - 4d\theta$	07	
1		Using residue theorem, evaluate $\int_0^{\pi} \frac{1}{5+4\sin\theta}$.		
Q.4	(a)	Evaluate $\int_C Re(z)dz$, where c is the shortest path from 1+i to 3+2i	03	
5	(b)	Solve the partial differential equation $(D^2 - 5DD' + 6D'^2)z = e^{x+y}$.	04	
	(c)	Obtain the complete integral of the followings:	07	
1	7	(i) $p^2 - q^2 = x - y$.		
7		(ii) $z = px + qy - 2\sqrt{pq}$		

- 0.4 03 Find the Laurent's series that represents the function $f(z) = z^2 \sin(\frac{1}{z^2})$ in the domain $0 < |z| < \infty$ Solve $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$
 - 04 (b)
 - Find the general solution of the partial differential equation $\frac{\partial u}{\partial t} = c^2$ **07** by method of separation of variables.
- Q.5 Solve pq = p + q03 (a)
 - (b) Find a complete integral of the equation $p^2y(1+x^2)=qx^2$ 04
 - (c) If a string of length l is initially at rest in equilibrium position and each 07 of its points is given the velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0} = k \sin^3\left(\frac{\pi x}{l}\right)$, x being the distance from an end point. Find the displacement of the string at any point.

OR

- Q.5 (a) Solve $\frac{\partial^2 z}{\partial x^2} = \sin x$. 03
 - **(b)** Solve: (y + z)p + (z + x)q = x + y04
 - (c) A homogeneous rod of conducting material of length 100cm has its ends 07 kept at zero temperature and the temperature initially is $u(x, 0) = x, 0 \le$ $x \le 100$. Find the temperature u(x, 0) at any time.