		GUJARAT TECHNOLOGICAL UNIVERSIT	ſΥ				
BE - SEMESTER- IV(NEW) EXAMINATION - SUMMER 2023							
Subject Code: 3140610 Date: 17-07-2023 Subject Neme: Complex Variables and Partial Differential Equations							
Time:10:30 AM TO 01:00 PM Total Marks:70							
Instructions:							
1.	Att	empt all questions.					
2. 3.	Fig	ures to the right indicate full marks.					
4.	Sin	ple and non-programmable scientific calculators are allowed.					
			Marks				
Q.1	(a)	Prove that i^i is real.	03				
	(b)	Simplify $\frac{(\cos 5\theta - i\sin 5\theta)^2(\cos 7\theta + i\sin 7\theta)^{-3}}{(\cos 4\theta - i\sin 4\theta)^9(\cos \theta + i\sin \theta)^5}$	04				
	(c)	Solve $(D^2 + DD' - 6D'^2)z = \sin(2x + y)$	07				
Q.2	(a)	Check whether the function $f(z) = e^{\overline{z}}$ is analytic or not at any	03				
	(b)	point.	0.4				
	(U) (a)	Find and plot all values of $(8i)^{\overline{3}}$.	07				
	(C)	Show that the function $u = e^{-\cos y}$ is harmonic. Determine its harmonic conjugate $v(x, y)$ and the analytic function $f(z) = u + v(x, y)$	07				
		iv.					
		OR	05				
	(c)	Determine the region in the w-plane into which the triangle bounded by the lines $x = 0$, $y = 0$ and $x + y = 1$ in the z-plane is	07				
		mapped under the transformation $w = 4z$.					
0.2	(a)	States i) Caushy Connect Theorem ii) iourille Theorem	02				
Q.3	(a) (b)	State: 1) Cauchy-Goursat Theorem 11)Liouville Theorem.	03				
		Find an upper bound for the absolute value of $\oint_c \frac{1}{z+1} dz$, where					
	(c)	Write Cauchy's Integral formula and hence evaluate $\oint \frac{z+1}{z} dz$	07				
		where C is the circle $ z = 1$					
		OR					
Q.3	(a)	Evaluate $\oint_C \frac{1}{z} dz$, where C is the circle $x = cost$, $y = sint$, $0 \le 1$	03				
		$t \leq 2\pi$.					
	(b)	Find the values of x and y if $e^z = \sqrt{3} + i$.	04				
~ ~	(C)	Evaluate $\int_c \frac{z+1}{z^4-4z^3+4z^2} dz$, where C is the circle $ z-2-i = 2$.	07				
01		t_1 , c_2 , t_3 , c_4 , c_5 , t_{anz}	03				
Q. 1	(a)	Identify the type of singularities of $f(z) = \frac{1}{z}$.	03				
	(b)	Form a partial differential equation by eliminating the arbitrary	04				
	(c)	function from $z = f(x^2 - y^2)$. Express $f(z) = \frac{1}{1}$ in a Leurent series valid for the following	07				
$C \land$		Express $f(z) = \frac{1}{z(z-1)}$ in a Laurent series valid for the following appular domains					
		(a) $0 < z < 1$ (b) $1 < z $ (c) $0 < z - 1 < 1$.					
		OR					

1

	Q.4	(a) (b)	Find the complete integral of $pq = k$, where k is a constant. Evaluate by the Residue Theorem $\int_c \frac{1}{(z-1)^2(z-3)} dz$, where the contour C is the rectangle defined by $x = 0, x = 4, y = -1, y = 1$. Solve $(x^2 - y^2 - z^2)n + 2xya = 2xz$	03 04
	0.5	(e) (a)	The for singularity of $\frac{1}{1}$ and hence find the corresponding	03
	Qie	(b) (c)	residues. Solve $\frac{\partial^3 z}{\partial x^2 \partial y} = \cos(2x + 3y)$. Using the method of separation of variable, find the solution of	04 07
		(-)	$\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$, given that $u(0, y) = 8e^{-3y}$.	
	Q.5	(a) (b) (c)	Solve $(D^3 - 2D^2D')z = 2e^{2x}$. Solve $p^2 + q^2 = x + y$. Solve $(D^2 + DD' - 6D'^2)z = ycosx$.	03 04 07
			Q.	
	(
	~			
Ŕ				
	Y			
9				