\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER- IV(NEW) EXAMINATION - SUMMER 2023

Subject Code:3140610
Date:17-07-2023
Subject Name:Complex Variables and Partial Differential Equations Time:10:30 AM TO 01:00 PM

Total Marks:70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.
Q. 1 (a) Prove that i^{i} is real. 03
(b) Simplify $\frac{(\cos 5 \theta-i \sin 5 \theta)^{2}(\cos 7 \theta+i \sin 7 \theta)^{-3}}{(\cos 4 \theta-i \sin 4 \theta)^{9}(\cos \theta+i \sin \theta)^{5}}$
(c) Solve $\left.\left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right) z=\sin (2 x+y)\right)$

07
Q. 2 (a) Check whether the function $f(z)=e^{\bar{z}}$ is analytic or not at any point.
(b) Find and plot all values of $(8 i)^{\frac{1}{3}}$.
(c) Show that the function $u=e^{x} \cos y$ is harmonic. Determine its harmonic conjugate $v(x, y)$ and the analytic function $f(z)=u+$ iv.

OR

(c) Determine the region in the w-plane into which the triangle bounded by the lines $x=0, y=0$ and $x+y=1$ in the z-plane is mapped under the transformation $w=4 z$.
Q. 3 (a) State: i) Cauchy-Goûrsat Theorem ii)Liouville Theorem.
(b) Find an upper bound for the absolute value of $\oint_{c} \frac{e^{z}}{z+1} d z$, where C is the circle $|z|=4$.
(c) Write Cauchy's Integral formula and hence evaluate $\oint_{c} \frac{z+1}{z^{4}+2 i z^{3}} d z$, where C is the circle $|z|=1$.

OR

Q. 3 (a) Evaluate $\oint_{c} \frac{1}{z} d z$, where C is the circle $x=\operatorname{cost}, y=\operatorname{sint}, 0 \leq$ $t \leq 2 \pi$.
(b) Find the values of x and y if $e^{z}=\sqrt{3}+i$. 04
(c) Evaluate $\int_{c} \frac{z+1}{z^{4}-4 z^{3}+4 z^{2}} d z$, where C is the circle $|z-2-i|=2$.
Q. 4 (a) Identify the type of singularities of $f(z)=\frac{\tan z}{z}$.
(b) Form a partial differential equation by eliminating the arbitrary 04 function from $z=f\left(x^{2}-y^{2}\right)$.
(c) Express $f(z)=\frac{1}{z(z-1)}$ in a Laurent series valid for the following annular domains.
(a) $0<|z|<1$
(b) $1<|z|$
(c) $0<|z-1|<1$.
Q. 4 (a) Find the complete integral of $p q=k$, where k is a constant.
(b) Evaluate by the Residue Theorem $\int_{c} \frac{1}{(z-1)^{2}(z-3)} d z$, where the contour C is the rectangle defined by $x=0, x=4, y=-1, y=1$.
(c) Solve $\left(x^{2}-y^{2}-z^{2}\right) p+2 x y q=2 x z$.
Q. 5 (a) Test for singularity of $\frac{1}{z^{2}+1}$ and hence find the corresponding 03 residues.
(b) Solve $\frac{\partial^{3} z}{\partial x^{2} \partial y}=\cos (2 x+3 y)$.
(c) Using the method of separation of variable, find the solution of $\frac{\partial u}{\partial x}=4 \frac{\partial u}{\partial y}$, given that $u(0, y)=8 e^{-3 y}$.

OR

Q. 5 (a) Solve $\left(D^{3}-2 D^{2} D^{\prime}\right) z=2 e^{2 x}$.
(b) Solve $p^{2}+q^{2}=x+y$.
(c) Solve $\left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right) z=y \cos x$.

