Seat No.: _____

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY BE- SEMESTER-V (NEW) EXAMINATION – WINTER 2020						
Subj	ect	Code:3150615 Date:03/02/2	2021			
Subi	ect	Name:Soil Mechanics				
Time 10.30 AM TO 12.30 PM Total Marks						
Instru	c.10 Iction		3. 30			
mətit	1.	Attempt any FOUR questions out of EIGHT questions.				
	2.	Make suitable assumptions wherever necessary.				
	3.	Figures to the right indicate full marks.				
			Marks			
Q.1	(a)	Discuss various types of slope failures	03			
	(b)	Differentiate the Infinite and finite slope.	04			
	(c)	Explain Swedish circle method of stability. analysis	07			
Q.2	(a)	Write and explain Boussinesque's equation.	03			
	(b)	Explain contact pressure.	04			
	(c)	Write short note on "New-mark's Influence Chart".	07			
0.1			02			
Q.3	(a)	Enlist factor affecting the bearing capacity and explain any one in detail.	03			
	(D)	Define:	04			
		1. Gross pressure intensity 2. Elitimate bearing connectity				
		2. Onlinate bearing Capacity				
		5. Sale bearing Capacity				
	(0)	4. Allowable bearing Capacity	07			
	(\mathbf{c})	Describe plate load lest with heat sketch.	07			
04	(9)	Explain a types of pavements	03			
דיע	(\mathbf{a})	Differentiate between General shear failure and Local shear failure with	04			
	(0)	neat sketch	•••			
	(c)	A square footing 2.5 m by 2.5 m is built in a homogeneous bed of sand of	07			
	(•)	unit weight 20 kN/m ³ and having an angle of shearing resistance of 36° .				
		The depth of the base of footing is 1.5 m below the ground surface.				
		Calculate the safe load that can be carried by a footing with a factor of				
		safety of 3 against complete shear failure. Use Terzaghi's analysis. Take				
	ø.	$Nc = 65.4$, $Nq = 49.4$ and $N\gamma = 54$.				
Q.5	(a)	Write the basic principles involved in the geophysical methods of	03			
		subsurface soil exploration				
	(b)	Explain Bore log in detail.	04			
	(c)	What are the methods available for sub surface exploration? Explain	07			
		any one in detail.				
Q.6	(a)	Name and explain the shear tests which may be performed based on the	03			
		different drainage conditions.				
	(b)	Explain importance of 'Unconfined Compression Test'& 'Laboratory	04			
		Vane Shear Test'.				

(c) A standard specimen of cohesionless sand was tested in triaxial compression and the sample failed at a deviator stress of 482 kN/m^2 , when the cell pressure was 100 kN/m², under drained condition. Find the effective angle of shearing resistance of sand. What would be the deviator stress and the minor principal stress at failure for another identical specimen of sand if it s tested under a cell pressure of 200 kN/m²?

Q.7	(a)	Enlist a different types of Geosynthetics
-----	------------	---

(b) Explain functions of Geosynthetics.

In a 16 pile group, the pile diameter is 45 cm and center to center spacing (c) of the square group is 1.5 m. If $c = 50 \text{ kN/m}^2$, determine whether the failure would occur with the pile acting individually, or as a group? Neglect bearing at the tip of the pile. All piles are 10 m long. Take m = 0.7 for shear mobilization around each pile.

Q.8	(a)	Explain in detail "Under Reamed Pile Foundation".	03
	(b)	How do you estimate the group capacity of piles in sand?	04
	(c)	What is negative skin friction? What is its effect on the pile?	07

What is negative skin friction? What is its effect on the pile? (c)

07

03

04

07