GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V (NEW) EXAMINATION - WINTER 2021

Subject Code:3150616

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.
Q. 1 (a) Derive the relation between cumecs and cusecs.
(b) What will be the ratio of discharges and velocities for the two pipes (of 04 same friction factor) in series having ratio of diameter $1 / 2$.
(c) What will be the ratio of discharges and velocities for the two pipes(of 07
same friction factor) in parallel having ratio of diameter $1 / 2$.
Q. 2 (a) Write any three different equations to find velocity in hydraulics.
(b) Write a note on Hazen-Williams equation with its significance. 04
(c) Derive the equation of head-loss from Hazen-Williams equation. 07

OR

(c) Write the values of Co-efficient of hydraulic capacity C_{H} for Brick 07
sewer, Vitrified clay, New riveted steel, Concrete, Asbestos-cement,
New CI and 20 years old CI.
Q. 3 (a) Define Mass-curve and explain in short. 03
(b) Write a note on techno-economic analysis of rising main. 04
(c) Calculate the diameter of a pipe 1 km laid to discharge a flow of 1000 $\mathrm{m}^{3} /$ day under a head-loss of $10 \mathrm{~m} .\left(\mathrm{C}_{\mathrm{H}}=100\right)$

OR

Q. 3 (a) Explain rehabilitation of a pipeline in brief. 03
(b) Write about the burst detection techniques in pipe. 04
(c) A 6 km long new $\mathrm{CI}\left(\mathrm{C}_{\mathrm{H}}=130\right)$ pipeline carries 3201/s of water. Find the $\mathbf{0 7}$ head-loss of the diameter is 30 cm .
Q. 4 (a) Give your views about the software EPANET. 03
(b) What is water-hammer process? Explain. 04
(c) Water has to be supplied to a town of 1 lakh population at 150 LPCD 07 from a river 2000 m away. The difference in elevation between lowest point and reservoir is 36 m . If the demand has to be supplied in 8 hrs , determine the size of the main and the BHP of the pumps. Assume max demand 1.5 times the average. $4 \mathrm{f}=0.03$, velocity of flow $=2.4 \mathrm{~m} / \mathrm{s}$ and efficiency of pump $=80 \%$.

OR

Q. 4 (a) How would you overcome the problem of leakage in pipes? 03
(b) Write about some remedial measures for water hammer. 04
(c) Explain the types of valves and its usage 07
Q. 5 (a) Write about some pipe welding techniques. 03
(b) What are the factors to be considered for the selection of pipe material? 04
(c) A centrifugal pump driven by an electric motor lifts water through a total 07 height of 50 m from the reservoir to the discharge end. The pump
efficiency is 77% and the motor efficiency is 85%. The lift is through 300 m length of 10 cm diameter rising main and the pumping rate is 1500 $1 / \mathrm{min}$. If the $4 \mathrm{f}=0.025$, and the power costs 25 paise per KWH, what is the cost of power for pumping four million litres of water?

OR
Q. 5 (a) Write a brief note on Flow-meter.
(b) What are anchors? Explain.
(c) Write a note on continuous and intermittent water supply

