GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- III EXAMINATION – SUMMER 2020

Subject Code: 3130702

Subject Name: Data Structures

Total Marks: 70

Date:27/10/2020

Enrolment No.____

Sasje.					
Time:	02:30	PM	то	05:00	PM
Instruct	ions:				

1.	Attempt all questions.	

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

				Marks
	Q.1	(a)	Differentiate between data types and data structures.	03
		(b)	Answer the followings:	04
			(1) Give examples of Linear and Non-Linear	
			Data Structures.	
			(2) What do you mean by Abstract Data Types?	
		(c)	Discuss and write a program to implement queue	07
		(C)	functions using arrays.	07
	Q.2	(a)	Distinguish between stack and queue.	03
	· ·	(b)	What is top of stack? Why stack is called LIFO list?	04
		(c)	What is a circular queue? How do you check the	07
			queue full condition? Write an algorithm to count	
			the nodes in a circular queue.	
			• OR	
		(c)	Explain creation, insertion and deletion of doubly	07
			linked list with example.	
	Q.3	(a)	What are binary trees? Mention different types of	03
			binary trees with example.	
		(b)	What is a graph? Explain various representations of	04
			graphs.	
		(c)	Write an algorithm to add a node into a binary	07
			search tree.	
3			OR	
	Q.3	(a)	What is B -tree of order m? Draw a B-tree of order	03
			3.	
		(b)	Construct a binary tree having the following	04
			traversal sequences:	
			Preorder traversal A B C D E F G H I	
			Inorder traversal B C A E D G H F I	
		(c)	Discuss algorithm of Breadth First Search (BFS)	07
			traversal for a Graph. Explain with an example.	
	Q.4	(a)	Explain Sequential file organizations and list its	03
			advantages and disadvantages.	
		(b)	How access of record is performed in multi key file	04
			organization?	

(c)	Describe various collision resolution techniques in	07
	hashing.	

OR

Q.4	4 (a) (b) (c)	Explain indexed sequential file structure. Explain minimal spanning tree. What is hashing? What are the qualities of a good hash function? Explain any two hash functions in detail.	03 04 07
Q.4		Define topological sort?	03
	(b)	Compare sequential searching with binary searching in detail.	04
	(c)	Examine the algorithm for Insertion sort and sort the following array: 77, 33, 44, 11, 88, 22, 66, 55	07
		OR	
Q.:	5 (a) (b) (c)	What do you mean by internal and external sorting? Write an algorithm for quick sort. What is Binary Search Tree? Construct a binary search tree for the following elements 21, 16, 24, 18, 22, 25, 26, 27, 29, 33	03 04 07