\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (NEW) EXAMINATION - WINTER 2021

Subject Code:3130005
Date:17-02-2022

Subject Name:Complex Variables and Partial Differential Equations Time:10:30 AM TO 01:00 PM

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

Marks

Q. 1 (a) Represent $z=7 i$ into polar form and find the argument of z and the principal value of the argument of z.
(b) State De Moivre's theorem. Find and plot all roots of $(1+i)^{\frac{1}{3}}$ in the complex plane.
(c) Using the method of separation of variables, solve $4 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=3 u$ and $u=e^{-5 y}$ when $x=0$.
Q. 2 (a) Define an analytic function. Write the necessary and sufficient condition for function $f(z)$ to be analytic. Show that $f(z)=|z|^{2}$ is nowhere analytic.
(b) Define the Mobious transformation. Determine the bilinear transformation which mapping the points $0, \infty, i$ onto $\infty, 2,0$.
(c) Attempt the following.
(i) Define the harmonic function. Show that $u=x^{2}-y^{2}+x$ is 04 harmonic and find harmonic conjugate of u.
(ii)

$$
\text { Show that } f(z)=\left\{\begin{array}{ll}
\frac{\operatorname{Im}(z)}{|z|} & ; z \neq 0 \\
0 & ; z=0
\end{array} \text { is not continuous at } z=0\right.
$$

OR
(c) Attempt the following.
(i) Prove that $\cos ^{-1} z=-i \ln \left(z+i \sqrt{1-z^{2}}\right)$. 4
(ii) Find the values of $\operatorname{Re} f(z)$ and $\operatorname{Im} f(z)$ at the point $7+2 i, \quad 3$ where $f(z)=\frac{1}{1-z}$.
Q. 3 (a) Evaluate $\int_{C}^{-} z d z$, where C is the right- half of the circle $|z|=2$ and hence show that $\int_{C} \frac{d z}{z}=\pi i$.
(b) Expand $f(z)=\sin z$ in a Taylor series about $z=\frac{\pi}{4}$ and write the Maclaurin series for e^{-z}.
(c) Write the Cauchy integral theorem and Cauchy integral formula and hence evaluate:
(i) $\oint_{C} \frac{e^{z}}{(z-1)(z-3)} d z ; C:|z|=2$.
(ii) $\oint_{C} e^{z} d z ; C:|z|=3$.

OR

Q. 3 (a) Evaluate $\oint_{C} \frac{e^{z}}{z+i} d z$, where $c:|z-1|=1$.
(b) Develop the following functions into Maclaurin series:(i) $\cos ^{2} z$ (ii) $e^{z} \cos z$.
(c) Evaluate $\int_{C} \operatorname{Re}\left(z^{2}\right) d z$, where C is the boundary of the square with vertices $0, i, 1+i, 1$ in the clockwise direction.
Q. 4 (a) Define the singular points of $f(z)$. Find the singularity of $f(z)$ and classify as pole, essential singularity or removable singularity. where $f(z)=\frac{1-e^{z}}{z}$.
(b) State the Cauchy residue theorem. Find the residue at its poles of $f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}$ and hence evaluate $\oint_{C} f(z) d z, C:|z|=3$.
(c) Determine the Laurent series expansion of $f(z)=\frac{1}{(z+2)(z+4)}$ valid for regions
(i) $|z|<2$
(ii) $2<|z|<4$
(iii) $|z|>4$

OR

Q. 4 (a) Solve $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}=e^{x+2 y}$.
(b) Form a partial differential equation by eliminating the arbitrary functions form the equations $z=f(x+a y)+\phi(x-a y)$.
(c) Show that $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{\pi}{6}$.
Q. 5 (a) Form a partial differential equation by eliminating the arbitrary function form $u=f\left(\frac{x}{y}\right)$.
(b) State the Lagrange's linear partial differential equation of first order and hence solve $x(y-z) p+y(z-x)=z(x-y)$
(c) Using the method of separation of variables, solve $\frac{\partial u}{\partial x}=4 \frac{\partial u}{\partial y}$ where $u(0, y)=8 e^{-3 y}$.

OR

Q. 5 (a) Obtain the general solution of $p+q^{2}=1$.
(b) Solve by Charpit's method: $p x+q y=p q$.
(c) Find the solution of the wave equation $u_{t t}=c^{2} u_{x x}$,
$0 \leq x \leq L \quad$ satisfying the condition $u(0, t)=u(L, t)=0, u_{t}(x, 0)=0$, $u(x, 0)=\frac{\pi x}{L}, 0 \leq x \leq L$.

