GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (NEW) EXAMINATION – WINTER 2021

		BE - SEMESTER-III (NEW) EXAMINATION – WINTER 2021	
Su	Subject Code:3130704 Date:23-02		
Subject Name:Digital Fundamentals			
	Time:10:30 AM TO 01:00 PM Total Mark		
Instructions:			
		. Attempt all questions.	
	2		
	3	. Figures to the right indicate full marks.	
	4	. Simple and non-programmable scientific calculators are allowed.	
			MARKS
Q.1	(a)	Implement EX-NOR using NAND gate.	03
	(b)		04
	(c)	Give classification of logic families and compare CMOS and TTL.	07
Q.2	(a)	Convert $F(A,B,C) = BC+A$ into standard minterm form.	03
	(b)	With logic diagram and truth table, explain the working of 3 line to 8 line	04
		decoder.	
	(c)	Explain Successive Approximation A/D converter in detail.	07
		OR	
	(c)	A combinational logic is defined by functions:	07
		$F_1(A,B,C) = \sum m (3,5,6,7)$ $F_2(A,B,C) = \sum m (0,2,4,7)$	
		Implement the circuit with PLA having 3 inputs, 4 product terms & 2 outputs.	
Q.3	(a)	Simplify the Boolean expression: $F(x,y,z) = \sum m (0,1,3,4,5,7)$	03
2.5	(b)		03
	(c)	Design full adder circuit using decoder and multiplexer.	07
	(-)	OR	
Q.3	(a)	Generate AND & EX-OR gates using NOR gate.	03
_	(b)	Implement D flip flop using JK flip flop.	04
	(c)	Design a counter to generate the repetitive sequence 0,4,2,1,6.	07
Q.4		What is race around condition in JK flip flop.	03
	(b)	Construct a ring counter with five timing signals.	04
	(c)	Design BCD to Excess 3 code converter using minimum number of NAND	07
		gates.	
		OR	
Q.4	(a)	Explain 2-bit comparator circuit.	03
	(b)	Write a short note on FPGA.	04
	(c)	What is Digital to Analog converter? Draw and Explain R-2R DAC.	07
Q.5	(a)	Perform following operation using 2's complement method.	03
2.0		$(11010)_2 - (1000)_2$	
<u> </u>	(b)	Write a short note on Read Only Memory (ROM).	04
	(c)	Explain the working of 4 bit binary ripple counter.	07
		OR	
Q.5	(a)	Obtain the truth table of the function: $F = xy+yz+zx$.	03
	(b)	Implement following functions using ROM.	04
		$F_1 = \sum m (1,3,4,6)$ and $F_2 = \sum m (0,1,5,7)$.	
	(c)	Explain in detail Dual Slope A/D converter.	07
