Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III(NEW) EXAMINATION - SUMMER 2023 Subject Code:3130005 Date:24-07-2023

Subject Name: Complex Variables and Partial Differential Equations

Time: 02:30 PM TO 05:00 PM Total Marks:70

Instructions:

(c)

0.4

- 1. Attempt all questions.
- Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Simple and non-programmable scientific calculators are allowed.

MARKS Determine an analytic function whose real part is $e^{2x}(x\cos 2y - y\sin 2y)$ 0.1 03 Solve the equation $z^2 + (2i - 3)z + 5 - i = 0$

- 04 Show that $u(x, y) = 2x - x^3 + 3xy^2$ is harmonic and 07 Find a harmonic conjugate of u(x,y)
- Evaluate $\int_{\mathcal{C}} |z|^2 dz$ around the square with vertices at (0,0), (1,0), (1,1), 03 0.2
 - Expand $f(z) = \frac{1}{(z+2)(z+4)}$ valid for the following regions 04
 - 03
 - (i) |z| < 2 (ii) 2 < |z| < 4(i) Evaluate $\int_C \frac{zdz}{(z-1)(z-2)}$ where C is the circle $|z| = \frac{1}{2}$ (ii) Evaluate $\int_C \frac{dz}{z^2 7z + 12}$ where C is the circle |z| = 3.504

- Define mobius transformation. Determine the mobius transformation 07 which maps $z_1 = 0$, $z_2 = 1$, $z_3 = \infty$ onto $w_1 = -1$, $w_2 = -i$, $w_3 = 1$
- Find and plot the image of triangular region in the z-plane with vertices 03 Q.3(0,0), (1,0), (0,1) under the transformation w = (1-i)z + 3
 - Find the values of a and b such that the function $f(z) = x^2 + ay^2 2xy + ay^2$ 04 $i(bx^2 - y^2 + 2xy)$ is analytic.
 - Determine the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and Residue at each **07** pole. Hence evaluate $\int_C f(z)dz$ where C is the circle |z| = 3

- Expand $f(z) = \frac{1 e^z}{z}$ in Laurent's series about z = 0. 0.303
 - (b) Find modulus and argument of 04
 - (i) $\frac{1+2i}{1-(1-i)^2} \text{ (ii) } \frac{(1+i)^2}{1-i}$ Evaluate (i) $\int_C \frac{3z^2+7z+1}{z+1} dz \text{ Where C is } |z| = \frac{1}{2}$ (ii) $\int_C \frac{z^2+1}{z^2-1} dz \text{ Where C is } |z-1| = 1$ 03
 - 04 (a) Solve yzp - xzq = xy03
 - (b) Form partial differential equation by eliminating the arbitrary constants a 04 and b from $z = axe^{y} + \frac{1}{2}a^{2}e^{2y} + b$
 - Solve 25r 40s + 16t = 0Solve $p^2 + q^2 = x + y$ (c) (i) 03 04
- (a) Solve (mz ny)p + (nx lz)q = ly mx03 **Q.4**

	(b)	Form a partial differential equation by eliminating the arbitrary functions		
		from $f(x^2 - y^2, xyz) = 0$		
	(c)	(i) Solve $(D^2 - DD' + D' - 1)z = \cos(x + 2y)$	03	
		(ii) Solve using Charpit's Method $z^2 = pqxy$	04	
Q.5	(a)	Solve $(D^2 + 10DD' + 25D'^2)z = e^{3x+2y}$	03	
	(b)	Solve $x \frac{\partial u}{\partial x} - 2y \frac{\partial u}{\partial y} = 0$ using method of separation of variables.	04	
	(c)	(i) Solve $(D^2 - {D'}^2)z = x - y$	03	
		(ii) Solve $(2D^2 - 5DD' + 2D'^2) = \sin(2x + y)$	04	
OR				
Q.5	(a)	Solve $(1-x)p + (z-y)q = 3-z$	03	
	(b)	Solve $2\frac{\partial u}{\partial x} = \frac{\partial u}{\partial t} + u$ using method of separation of variables subject to the	04	
		condition $u(x,0) = 4e^{-3x}$		
	(c)	Find the solution of the wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ such that $y =$	07	
		acospt when $x = l$ and $y = 0$ when $x = 0$		
