GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER–V (NEW) EXAMINATION – WINTER 2023 Subject Code:3150703 Date:20-12-2023 Subject Name: Analysis and Design of Algorithms			
Time:10:30 AM TO 01:00 PM Total Marks:			70
Instructions:			
		 Attempt all questions. Make suitable assumptions wherever necessary. 	
		3. Figures to the right indicate full marks.	
		4. Simple and non-programmable scientific calculators are allowed.	
			MARKS
Q.1	(a)	What is an algorithm? Explain various properties of an algorithm.	03
×	(b)		04
		a. $T(n) = 2T(n/4) + 1$	
		b. $T(n)=3T(n/4) + nlgn$	
	(c)	Write selection sort algorithm and compute running time of algorithm.	07
Q.2	(a)	Explain general characteristics of greedy algorithms.	03
Q.4	(a) (b)		03
	(c)	Illustrate the working of the quick sort on input instance: 25, 29, 30, 35, 42, 47,	07
		50, 52, 60. Comment on the nature of input i.e. best case, average case or worst	
		case. Also discuss worst and best case of quick sort algorithm.	
	(c)	Give the properties of Heap Tree. Sort the following data using Heap Sort	07
	(C)	Method: 20, 50, 30, 75, 90, 60, 80, 25, 10, 40.	07
Q.3	(a)	Sort the List "G,U,J,A,R,A,T,S,A,R,K,A,R" in alphabetical order using merge	03
		sort.	
	(b)	Following are the details of various jobs to be scheduled on multiple processors such that no two processes execute at the same on the same processor. Show	04
		schedule of these jobs on minimum number of processors using greedy approach.	
		Jobs J ₁ J ₂ J ₃ J ₄ J ₅ J ₆ J ₇	
		Start time 0 3 4 9 7 1 6	
			. –
	(c)	Using algorithm find an optimal parenthesization of a matrix chain product whose sequence of dimension is (5, 10, 2, 12, 5, 50, 6) (use dynamic programming)	07
		whose sequence of dimension is (5,10,3,12,5,50,6) (use dynamic programming). OR	
Q.3	(a)		03
-		3, 1, 2, 3, 3, 1	
	(b)	Find the Optimal Huffman code for each symbol in following text	04
	(c)	ABCCDEBABFFBACBEBDFAAAABCDEEDCCBFEBFCAE Solve following knapsack problem using dynamic programming algorithm with	07
		given capacity $W=5$, Weight and Value are as follows (2,12),(1,10),(3,20),(2,15)	07
Q.4	(a)	Solve the following Task Assignment problem for minimization using following	03
		cost matrix. (Cost matrix represents cost of Task T performed by Person P).	
		$\begin{array}{cccc} T_1 & T_2 & T_3 \\ P_1 & 10 & 20 & 25 \end{array}$	
		$P_1 = 10 = 20 = 23$ $P_2 = 20 = 23 = 26$	
		$P_3 = 12 = 16 = 25$	

2

- (b) Given coins of denominations 2, 3 and 4 with amount to be pay is 5. Find optimal no. of coins and sequence of coins used to pay given amount using dynamic method.
- Write an algorithm to find out the articulation points of an undirected graph. Find (c) out articulation points for the following graph. Consider vertex 0 as the starting point.

OR

0.4 (a) Find out the NCR $\binom{5}{3}$ Using Dynamic Method.

1

(b) Write the Kruskal's Algorithm to find out Minimum Spanning Tree. Apply the 04 same and find MST for the graph given below.

10

- Q.5 Demonstrate Binary Search method to search Key = 14, form the array А 03 **(a)** = <2,4,7,8,10,13,14,60>.
 - Solve the following knapsack problem using greedy method. Number of items = 04 **(b)** 5, knapsack capacity W = 100, weight vector = {50,40,30,20,10} and profit vector = $\{1, 2, 3, 4, 5\}$. 07
 - Define P, NP, NP-complete, NP-Hard problems. Give examples of each (c)

OR

- Explain in Brief: Polynomial reduction. **Q.5 (a)**
 - Traverse the following graph using Breadth First Search Technique. Also draw 04 **(b)** BFS Tree for a given graph.

(c) Explain spurious hits in Rabin-Karp string matching algorithm with example. 07 Working modulo q=13, how many spurious hits does the Rabin-Karp matcher encounter in the text T = 2359023141526739921 when looking for the pattern P = 26739?

28 14 5

4

03

07

04

03