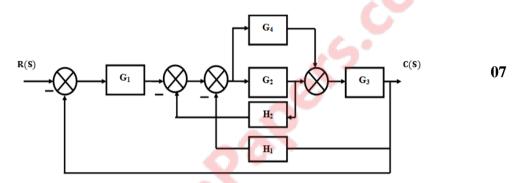
GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (New) EXAMINATION - WINTER 2019

Subject Code: 3130905 Date: 3/12/2019

Subject Name: Control System Theory

Time: 02:30 PM TO 05:00 PM Total Marks: 70


Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Marks

- Q.1 (a) Define the following terms.
 - (1) Control system(2) Plants (3) Process

- 03
- (b) Explain transfer function and State advantages and Dis-advantages of transfer function.
- (c) Solve the block diagram to find transfer function of the system shown in figure.

Q.2 (a) Explain Steady state Error.

03

(b) Compare Open loop Vs close loop control systems

- 04
- (c) The characteristic equation of feedback control system is given by $s^4+20s^3+15s^2+2s+K=0$
 - 1) Calculate the range of K for the system to be stable.
- 07
- 2) Can the system be marginally stable? If so, find the required value of k and frequency of sustained oscillation.

ΛR

(c) Write Nyquist contour and Nyquist stability criterion in brief.

07

Q.3 (a) Calculate damping ratio and Undamped natural frequency of oscillation for the open loop transfer function of a servo system with unity feedback system: $G(S) = \frac{10}{(S+2)(s+5)}$

03

(b) Explain Standard Test Signals used in control system

- 04
- (c) Construct the root loci of open loop transfer function of the feedback control system given as $G(S)H(S) = \frac{k(S+3)}{s(s+2)}$

07

ΛR

Q.3 (a) Simplify the significance of proportional control.

- 03
- **(b)** Define following terms with respect to second order system.
 - 1) Delay Time
 - 2) Rise Time

04

- 3) Peak Time
- 4) Steady state error

(c) Consider a lag-lead network defined by

$$Gc(s) = k \frac{(s + \frac{1}{T_1})(s + \frac{1}{T_2})}{(s + \frac{\beta}{T_1})(s + \frac{1}{\beta T_2})}$$

07

04

07

03

07

Show that at frequency ω_1 , where $\omega_1 = \frac{1}{\sqrt{T_1 T_2}}$, the phase angle of $Gc(j\omega)$ becomes zero.

- Q.4 (a) Explain the effect of integral control action on system Performance. 03
 - **(b)** Explain relationship between time and frequency response.
 - (c) Explain step by step Procedure for Phase Lag Network.

OF

- **Q.4** (a) Explain the advantages of bode plot.
 - (b) Summarize types of compensation and explain any one. 04
 - (c) Explain the step by step procedure for obtaining bode plot.
- Q.5 (a) Explain polar plots with a sketch of a simple example 03
 - (b) Decide that How stability can be ensured from Routh Table? 04
 - (c) Distinguish state variable approach verses the classical approach of transfer function for the analysis of control systems.

OR

- Q.5 (a) Explain following terms. 1) State variable 2) State trajectory 3) State vector 03
 - **(b)** Define and explain following terms with respect to frequency response.
 - 1) Gain Margin
 - 2) Phase Margin
 - 3) Gain Crossover frequency
 - 4) Phase Crossover frequency
 - (c) Investigate Controllability and observability of the system

$$X(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} X(t) + \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} u(t)$$
 07

$$c(t) = [1 \quad 0 \quad 0]x(t)$$
