Instructions:

Subject Code:3130906

Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY BE- SEMESTER-III (NEW) EXAMINATION – WINTER 2020

Date:10/03/2021

Subject Name:Electrical Circuit Analysis Time:10:30 AM TO 12:30 PM

Total Marks:56

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.

01	(a)	Explain Norton's theorem.	Marks 03
Q.1	(a) (b)	Determine current flowing through R_L for the network shown in Fig. 1	03 04
	(c)	using Nodal voltage technique. Determine current flowing through 5 Ω resistance for the network shown	07
	(0)	in Fig. 2 using superposition theorem.	07
Q.2	(a)	In the circuit shown in Fig.3, the switch 'K' is closed at t=0. Assuming zero initial current through inductor. Find ' <i>i</i> ', ' <i>di/dt</i> ' and ' <i>d</i> ² <i>i/dt</i> ² ' at t = 0 ⁺ .	03
	(b)	Obtain step response of series R-L circuit.	04
	(c)	Determine the load resistance R_L to be connected at terminal A-B in order to transfer maximum power from the network shown in Fig. 4. Also, determine the value of maximum power.	07
Q.3	(a)	Determine equivalent inductance between terminals A-B for the coupled circuit shown in Fig. 6.	03
	(b)	Explain the steps to obtain dual of a network with suitable example.	04
	(c)	Determine power supplied by 20 V source for the network shown in Fig. 7 using loop current method.	07
Q.4	(a)	Explain dot rule for coupled circuit.	03
-	(b)	Draw power triangle for series R-L circuit and define related terms.	04
	(c)	Determine current flowing through $R_L=5 \Omega$ resistance for the network shown in Fig. 8 using Thevenin's theorem.	07
Q.5	(a)	Define unit ramp function. Obtain Laplace transform of unit ramp function.	03
	(b)	In the network shown in Fig. 9, the switch is closed at t=0. By the method of Laplace transform, determine the current. Assume zero initial condition. Take $\omega = 10$ r/s.	04
	(c)	Define poles and zeros of network function. Explain significance of poles and zeros in different network functions.	07
Q.6	(a)	Obtain driving point impedance for the network shown in Fig. 10.	03
	(b)	Draw magnitude and phase plot of a voltage transfer function for the network shown in Fig. 11	04

	(c)	For the network shown in Fig. 12, the switch is in position 1 long enough to establish steady state. At $t = 0$, the switch is moved to position 2. Find the expression for the current in the circuit.	07
Q.7	(a)	Define H-parameter of a two-port network.	03
	(b)	Obtain condition for reciprocity and symmetry of a two port network in terms of Z peremeters	04
	(c)	terms of Z-parameters. Obtain y-parameters for the network shown in Fig. 13	07
Q.8	(a)	A two port network is represented by following equations: $V_1 = 24 I_1 + 8 I_2$	03
		$V_1 = 24 I_1 + 312$ $V_2 = 8 I_1 + 32 I_2$	
		Draw the T-network represented by above equations.	
	(b)	Obtain h-parameters for the network shown in Fig. 14	04
	(c)	Obtain ABCD parameters in terms of Z-parameters for a two-port network.	07
