\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE- SEMESTER-III (NEW) EXAMINATION - WINTER 2020

Subject Code:3130906
Date:10/03/2021

Subject Name:Electrical Circuit Analysis Time:10:30 AM TO 12:30 PM Instructions:

1. Attempt any FOUR questions out of EIGHT questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Marks
03
Q. 1 (a) Explain Norton's theorem. 04 using Nodal voltage technique.
(c) Determine current flowing through 5Ω resistance for the network shown 07 in Fig. 2 using superposition theorem.
Q. 2 (a) In the circuit shown in Fig.3, the switch ' K ' is closed at $\mathrm{t}=0$. Assuming 03 zero initial current through inductor. Find ' i ', ' $d i / d t$ ' and ' $d^{2} i / d t^{2}$ ' at $\mathrm{t}=0^{+}$.
(b) Obtain step response of series R-L circuit. 04
(c) Determine the load resistance R_{L} to be connected at terminal A-B in order 07 to transfer maximum power from the network shown in Fig. 4. Also, determine the value of maximum power.
Q. 3 (a) Determine equivalent inductance between terminals A-B for the coupled 03 circuit shown in Fig. 6.
(b) Explain the steps to obtain dual of a network with suitable example. 04
(c) Determine power supplied by 20 V source for the network shown in Fig. 07 7 using loop current method.
Q. 4 (a) Explain dot rule for coupled circuit. 03
(b) Draw power triangle for series R-L circuit and define related terms. 04
(c) Determine current flowing through $\mathrm{R}_{\mathrm{L}}=5 \Omega$ resistance for the network 07 shown in Fig. 8 using Thevenin's theorem.
Q. 5 (a) Define unit ramp function. Obtain Laplace transform of unit ramp function. 03
(b) In the network shown in Fig. 9, the switch is closed at $\mathrm{t}=0$. By the method 04 of Laplace transform, determine the current. Assume zero initial condition. Take $\omega=10 \mathrm{r} / \mathrm{s}$.
(c) Define poles and zeros of network function. Explain significance of poles 07 and zeros in different network functions.
Q. 6 (a) Obtain driving point impedance for the network shown in Fig. 10. 03
(b) Draw magnitude and phase plot of a voltage transfer function for the 04network shown in Fig. 11
(c) For the network shown in Fig. 12, the switch is in position 1 long enough to establish steady state. At $\mathrm{t}=0$, the switch is moved to position 2 . Find the expression for the current in the circuit.
Q. 7 (a) Define H-parameter of a two-port network. 03
(b) Obtain condition for reciprocity and symmetry of a two port network in terms of Z-parameters.
(c) Obtain y-parameters for the network shown in Fig. 13
Q. 8 (a) A two port network is represented by following equations:
$\mathrm{V}_{1}=24 \mathrm{I}_{1}+8 \mathrm{I}_{2}$
$\mathrm{V}_{2}=8 \mathrm{I}_{1}+32 \mathrm{I}_{2}$
Draw the T-network represented by above equations.
(b) Obtain h-parameters for the network shown in Fig. 1404
(c) Obtain ABCD parameters in terms of Z-parameters for a two-port network.07

Fig. 3

Fig. 4

Fig. 7

Fig. 9

