\qquad
\qquad
GUJARAT TECHNOLOGICAL UNIVERSITY
BE- SEMESTER-III (NEW) EXAMINATION - WINTER 2020
Subject Code:3130907
Subject Name:Analog \& Digital Electronics Time:10:30 AM TO 12:30 PMTotal Marks:56
Instructions:1. Attempt any FOUR questions out of EIGHT questions.2. Make suitable assumptions wherever necessary.3. Figures to the right indicate full marks.
MARKS
Q. 1 (a) Define Slew Rate, CMRR, \& Input Offset Voltage. 03
(b) Compare inverting and non-inverting op-amps. 04
(c) Draw \& explain in detail the logic diagram \& the truth table of clocked SR 07 flip-flop.
Q. 2 (a) Draw block diagram of an op-amp. 03
(b) Draw and explain working of zero crossing detector. 04
(c) List out and discuss all the ideal characteristics of an op-amp. 07
Q. 3 (a) For an inverting amplifier, $\mathrm{V}_{1}=1 \mathrm{~V}, \mathrm{~V}_{2}=3 \mathrm{~V}, \mathrm{~V}_{3}=2 \mathrm{~V}$ with $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=$ 03$2 \mathrm{~K} \Omega$ and $\mathrm{R}_{\mathrm{F}}=3 \mathrm{~K} \Omega$. Determine the output voltage.
(b) Design an $\mathrm{R}-\mathrm{C}$ phase shift oscillator to produce a sinusoidal output at 1 KHz , 04 using capacitor value $0.01 \mu \mathrm{~F}$.
(c) Write a short note on instrumentation amplifier using op-amp. 07
Q. 4 (a) Explain the application of an op-amp as an integrator. 03
(b) Design full adder logic circuit using 3×8 decoder and OR gates. 04
(c) Explain the circuit diagram of op-amp as a Peak detector. 07
Q. 5 (a) Design D FF using SR FF. Write truth table of D FF. 03
(b) Minimize following Boolean function using K-map: 04
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Pi M(1,2,3,8,9,11,14) \cdot d(7,15)$
(c) Given a logic function: $\mathrm{Z}=\mathrm{ABC}+\mathrm{BC}^{\prime} \mathrm{D}+\mathrm{A}^{\prime} \mathrm{BC}$.07a) Make a truth table.b) Simplify using K-map.c) Realize simplified function using NAND gates only.
Q. 6 (a) Minimize following Boolean function using K-map: 03
$\mathrm{Y}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma m(0,3,5,6,9,10,12,15)$
(b) Implement the following logic function using 8:1 multiplexer: 04
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum m(0,1,3,4,8,9,15)$
(c) Design a 4-bit synchronous down counter using T flip-flops. 07
Q. 7 (a) Compare combinational logic circuit with sequential logic circuit. 03
(b) Draw basic internal structure of 7490 ripple counter IC. Design BCD counter 04 using 7490 IC.
(c) Draw \& explain R-2R ladder D/A converter with necessary equations. 07
Q. 8 (a) Draw the logic diagram of 4-bit ripple up counter using JK FFs.
(b) Write a brief note on quantization and encoding.
(c) List out various commonly used A/D converters. Draw \& explain Flash A/D converter with necessary decoding table. Also mention pros \& cons of the same.

