\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE- SEMESTER-III (NEW) EXAMINATION - WINTER 2020
 Subject Code:3130908
 Date:09/03/2021
 Subject Name:Applied Mathematics for Electrical Engineering Time:10:30 AM TO 12:30 PM
 Total Marks:56
 Instructions:

1. Attempt any FOUR questions out of EIGHT questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Find a root of the equation $x^{4}-x-10=0$ using Bisection method. Perform only four iterations.
(b) Use Newton's divided difference formula to find $f(x)$ from the following data:

x	3	7	9	11
y	168	120	72	48

Hence evaluate y for $x=6$.
(c) (i) Use Trapezoidal rule to evaluate $\int_{0}^{1} x^{2} d x$ considering five subintervals.
(ii) Apply Runge-Kutta fourth order method to find an approximate value of y when $x=0.2$ given that

$$
\frac{d y}{d x}=y-\frac{2 x}{y}, \quad y(0)=1, \quad h=0.2
$$

Q. 2 (a) Find the mean, median and standard deviation for the following data:

$$
48,43,65,57,31,60,37,48,59,78 .
$$

(b) If the probability density of a random variable is given by

$$
f(x)=\left\{\begin{array}{cc}
k\left(1-x^{2}\right), & \text { for } 0<x<1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

find k. Also find the probabilities that a random variable having this probability density will take on a value (a) between 0.1 and 0.2 (b) greater than 0.5 .
(c) (i) Find a root of the equation $x e^{x}-\cos x=0$ in the interval $(0,1)$ using 03

Newton-Raphson Method correct up to $\varepsilon_{a}<1 \%$. Take $x_{0}=0.5$.
(ii) Find a real root of the equation $x^{3}+x^{2}-100=0$ correct to two decimal $\mathbf{0 4}$ places using Fixed Point Iteration method.
Q. 3 (a) Use Newton's backward interpolation formula to find the value of $f(175)$ from the following table:

x	140	150	160	170	180
$f(x)$	3685	4845	6302	8076	10225

(b) If $y(1)=-3, y(3)=9, y(4)=30, y(6)=132$, find the Lagrange's 04 interpolation polynomial that takes the same values as y at the given point.
(c) The following show the gain in reading speed of 8 students in a speed-reading program, and the number of weeks they have been in the program:

No. of weeks	3	5	2	8	6	9	3	4
Speed gain	86	118	49	193	164	232	73	109

Fit a straight line by the method of least squares.
Q. 4 (a) The population (in thousands) of a town is given below. Estimate the population for the year 1975 using interpolation.

Year	1971	1981	1991	2001	2011
Population	46	66	81	93	101

(b) In usual notations, prove the following identities:
(i) $1+\mu^{2} \delta^{2}=\left(1+\frac{1}{2} \delta^{2}\right)^{2}$
(ii) $\mu \delta=\frac{1}{2} \Delta E^{-1}+\frac{1}{2} \Delta$.
(c) Fit a parabola $y=a+b x+c x^{2}$ to the following data:

x	1	2	3	4	6
y	9.7468	24.4451	47.9318	78.4660	164.4186

Q. 5 (a) Find the value of $y(0.4)$ from the following differential equation with the given initial condition by Euler's method:

$$
\begin{equation*}
\frac{d y}{d x}=\log (x+y), \quad y(0)=2, \quad h=0.1 . \tag{03}
\end{equation*}
$$

(b) Evaluate $\int_{2}^{4}\left(x^{2}+2 x\right) d x$ by using Gauss' quadrature formula with $n=3$.
(c) (i) An assembly plant receives its voltage regulators from three different suppliers, 60% from supplier $B_{1}, 30 \%$ from supplier B_{2}, and 10% from supplier B_{3}.If 95% of the voltage regulators from $B_{1}, 80 \%$ of those from B_{2}, and 65% of those from B_{3} perform according to specifications, what is the probability that any one voltage regulator received by the plant will perform according to specifications? Also, find the probability that a particular voltage regulator, known to perform according to specifications, came from supplier B_{3}.
(ii) Find the missing frequencies f_{1} and f_{2} if the mean of the following frequency distribution of 100 families (f) is 30.4:

$$
\begin{array}{ccccccc}
x & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 & 50-60 \\
f & 10 & f_{1} & 25 & 30 & f_{2} & 10
\end{array}
$$

Q. 6 (a) Find, by Taylor's series method, the value of y at $x=0.1$ to five places of decimals from

$$
\begin{equation*}
\frac{d y}{d x}=x^{2} y-1, \quad y(0)=1 \tag{03}
\end{equation*}
$$

(b) Evaluate $\int_{0.2}^{1.4}(2+x \log x-\cos x) d x$ with $h=0.2$ by Simpson's one-third rule and Simpson's three-eighth rule.
(c) (i) The probability that an integrated circuit chip will have defective etching is 0.12 , the probability that it will have a crack defect is 0.29 , and the probability that it has both defects is 0.07 . What is the probability that a newly manufactured chip will have neither defect?
(ii) A standard cell whose voltage is known to be 1.10 volts was used to test the accuracy of two volt meters A and B. Ten independent readings of the voltage of the cells were taken with the two volt meters as per the following data. Which of these two is more reliable?
A $1.11 \quad 1.15$
1.14
$\begin{array}{lll}1.10 & 1.09 & 1.11\end{array}$
1.12
$1.15 \quad 1.13$
1.14
$\begin{array}{lllllllllll}B & 1.12 & 1.06 & 1.02 & 1.08 & 1.11 & 1.05 & 1.56 & 1.03 & 1.04 & 1.06\end{array}$
Q. 7 (a) Find the mode for the following frequency distribution:

03

Class	$0-6$	$6-12$	$12-18$	$18-24$	$24-30$
f	20	30	25	16	12

(b) Calculate the coefficient of skewness based on the Method of Moments from the following data:

Class	$0-4$	$5-9$	$10-14$	$15-19$	$20-24$
Frequency	7	12	15	10	6

(c) (i) For a random variable X, if $E(3 X-5)=16$ and $E\left(X^{2}\right)=58$, find the standard deviation of X.
(ii) If the events A and B are independent, then show that the events A and B^{\prime} are also independent.
Q. 8 (a) Calculate the mean and standard deviation from the following data:
$\begin{array}{llllllll}\text { Value } & 90-99 & 80-89 & 70-79 & 60-69 & 50-59 & 40-49 & 30-39\end{array}$ $\begin{array}{llllllll}\text { Frequency } & 2 & 12 & 22 & 20 & 14 & 4 & 1\end{array}$
(b) Find the mean deviation from median for the following data:

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$

Students	8	11	15	9	7

(c) (i) Three students A, B and C are running in a race. A and B have the same probability of winning and each is twice as likely to win as C. Find the probability that B or C wins.
(ii) The quantities of milk (in liters) produced by a dairy farm on ten consecutive days are shown below:
218.2, 199.7, 207.3, 185.4, 213.7, 184.7, 179.5, 194.4, 224.3, 203.5.

Evaluate the mean and the first four central moments of the milk yield data (in litres) of dairy farm.

