GUJARAT TECHNOLOGICAL UNIVERSITY BE- SEMESTER-III (NEW) EXAMINATION – WINTER 2020

Subject Code:3131103

Subject Name:Network Theory

Time:10:30 AM TO 12:30 PM

Total Marks:56

Date:05/03/2021

Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

Q.1	(a) (b) (c)	Determine the Laplace transform of $f(t) = e^{-3t}\cos 4t$. Explain the terms: 1) Tree 2) Bilateral 3) Oriented Graph 4) Linear In the circuit of Fig.1, switch k is closed at t=0. For the elements values given, obtain the general solution and particular solution for current i(t). Obtain the value of current at time t=0.1 sec.	03 04 07
Q.2	(a) (b)	Determine y-parameters in terms of z-parameters. How the following elements will behave at $t=0$ and $t=\infty$. Draw equivalent network as well. A) Inductor B) Capacitor.	03 04
	(c)	State and explain maximum power transfer theorem. Also derive the condition for maximum power transfer to the load for DC and AC circuits.	07
0.3	(a)	What is time constant? What is its significance?	03
Z .0	(b)	Briefly describe Millman's theorem.	04
	(c)	For the network of Fig.3, find the current through R=10hm by applying Thevenin's theorem. All resistances are in ohms.	07
Q.4	(a)	Derive the condition for network to be reciprocal for ABCD parameters.	03
	(b)	Explain characteristic of an ideal voltage source.	04
	(c)	In the network of Fig.4, the switch k is closed at t=0, a steady state having previously been attained. Find the particular solution for the current.	07
Q.5	(a)	State and explain final value theorem of Laplace transform.	03
	(b)	Determine the current in 10hm resistor of the network shown in Fig.5	04
		using source transformation method.	07
	(C)	In the network of Fig.6, the switch k is closed at t=0. Find the values of i, $\frac{di}{dt}$ and d^2i/dt^2 at t=0 ⁺ , if V=100V, R=10ohm, L=1H and C=10 ⁻⁵ F.	07
Q.6	(a) (b)	What is network synthesis? Obtain step response to R-L series circuit using Laplace Transformation	03 04
	(c)	Derive relationship between incidence matrix (A), fundamental tie- set matrix (B_f) and fundamental cut-set matrix (Q_f).	07
Q.7	(a)	List advantages of Laplace transformation method over classical method.	03
	(b) (c)	Briefly explain Positive Real Function (PRF). For the network of Fig.7, determine h-parameters.	04 07

- Q.8 (a) Define fundamental loop and cut-set.
 - (b) Derive the condition for network to be symmetrical for g-parameters.
 - (c) In Fig.8, the switch is in the position 1 long enough to establish steady state conditions and at t=0 is switched to position 2. Find expression for current in the circuit.

03

04

07