Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION - SUMMER 2021

U	,	Code:3131101 Date:08/09	9/2021
U		Name:Control Systems	
		:30 AM TO 01:00 PM Total Mar	:ks:70
Instru			A
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
	4.		MARK
Q.1	(a) (b)	Define: i) State variable ii) State space iii) State Discuss Force-Voltage (F-V) analogous system with analogous quantity.	03 04
	(c)	Define Routh's stability criterion. Construct Routh array and determine the stability of the system whose characteristic equation is $s^6+2s^5+8s^4+12s^3+20s^2+16s+16=0$	07
Q.2	(a)	Discuss Nyquist criteria for stability.	03
	(b)	Write a short note on closed loop control systems.	04
	(c)	Derive the expression for unit step response of underdamped second order system.	07
		OR	
	(c)	Draw Nyquist plot for unity feedback system having following open loop transfer function. Comment on stability.	07
		$G(s) = \frac{1}{s(s+4)(s+8)}$	
Q.3	(a)		03
2.0	(b)		04
	(c)	Determine gain margin & phase margin by sketching Bode plots of a	07
		unity feedback control system, having open loop transfer function $G(s) = \frac{10}{s(1+0.1s)(1+0.05s)}$	
		OR	
Q.3	(a)		03
	(b)	Derive an expression for the peak overshoot for a 2 nd order control system subjected to a unit step input.	04
	(c)	Sketch root locus for unity feedback control system, having following	07
		open loop transfer function.	
		$G(s) = \frac{k}{s(s+1)(s+3)(s+4)}$	
0.4	(0)		03
Q.4	(a) (b)	Write a short note on open loop control systems. Derive the equation of steady state error for closed loop transfer function.	04
	(c)	Explain phase lag compensator in detail.	07
	(0)	OR	0,
Q.4	(a)	What is angle of departure? Explain with necessary equations.	03
	(b)	Write properties of transfer function.	04
0.7	(c)	Explain phase lead compensator in detail.	07
Q.5	(a)	Explain standard test signals used in control systems.	03
	(b)	Explain effect of adding a pole at origin. Describe Correlation between transfer function and state space equations.	04

with suitable examples.

- Q.5 (a) Derive an expression for the rise time for a 2nd order control system 03 subjected to a unit step input.
 - (b) Determine type of system and error coefficients for unity feedback 04 system having following open loop transfer function.

$$G(s) = \frac{10(s+1)}{s^2(s+10)(s+2)}$$

 $G(s) = \frac{10(s+1)}{s^2(s+10)(s+2)}$ For a signal flow graph shown in figure, determine transfer function using Formula. Mason's Gain
