Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION - SUMMER 2022

Subject Code:3131101		Date:13-07-2022

Subject Name:Control Systems Time:02:30 PM TO 05:00 PM

Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS
Q.1	(a)	What is feedback? Explain the effect of feedback.	03
	(b)	Define: Transfer function, Self loop, Steady-state error	04
	(c)	What is control system? What are the different types of control systems? Compare open-	07
		loop and closed-loop control system.	
Q.2	(a)	List properties of the Transfer Function.	03
	(b)	Compare Block diagram and Signal flow graph methods.	04
	(c)	What is an analogous system? Establish force-current and force-voltage analogy.	07
		OR	
	(c)	Obtain Transfer function of the mechanical system shown in figure 1.	07

Figure 1.

- Q.3 (a) Explain: Frequency response, Root locus, Centroid.
 (b) Discuss standard Test signals used in control system.
 (c) Derive the closed loop transfer function using block diagram reduction technique for the
 07
 - (c) Derive the closed loop transfer function using block diagram reduction technique for the figure 2.

OR

- Q.3 (a) Discuss Hurwitz's stability criteria.
 - **(b)** Define: (1) Delay time (2) Rise time (3) Peak time (4) Settling time

03

04

(c) Obtain the transfer function C/R of the block diagram shown in figure 3. Using Mason's gain formula.

Figure 3.

- Q.4 (a) Explain: Gain margin, Phase margin, Polar plot.
 - (b) Apply Routh-Hurwitz criterian to determine stability of a control system whose open-loop transfer function is given below.

G(s)H(s) =
$$\frac{5}{s(s^2 + 2Ks + K + 4)}$$

(c) For the given type-2 system, find root locus and comment on stability.

$$G(s) = \frac{K}{(s^2)(s+2)}$$

OR

- Q.4 (a) Explain: State, State variable, state trajectory.
 - **(b)** Write short note on PID controller.
 - (c) For the given type-2 system, Draw the polar plot.

$$G(s) = \frac{40}{(s^2)(s+4)}$$

- Q.5 (a) Derive an expression for the rise time for a 2nd order control system subjected to a unit step input.
 - (b) Derive the expression for peak time Tp for a second order control system subjected to a unit step input.
 - (c) State and explain nyquist stability criteria.

OR

- Q.5 (a) Derive Correlation Between Transfer Functions and State-Space Equations.
 - (b) List Advantages of State variable analysis. 04
 - (c) For the given open-loop unstable system with transfer function 07

G(s)H(s) =
$$\frac{s+2}{(s^2-1)}$$

Draw Nyquist contour and plot.

07

03

04

07

03

04

03

07

03