
Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- HI(NEW) EXAMINATION - WINTER 2022

Sub	ject	Code:3131101 Date:22-02-	2023
		Name:Control Systems	7
	e:02 uction	:30 PM TO 05:00 PM Total Mark	ks:70
IIISUF		Attempt all questions.	
	2.	Make suitable assumptions wherever necessary.	
	3. 4.	Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
	7.	Simple and non-programmable scientific calculators are allowed.	MARKS
Q.1	(a)	Compare closed loop and open loop system.	03
	(b)	Discuss Force-Current (F-I) analogous system with analogous quantity.	04
	(c)	Define steady state error and derive the expressions for static error coefficients corresponding to step, ramp and parabolic inputs respectively.	07
Q.2	(a)	List properties of the transfer function.	03
	(b)	Discuss unit step response of first order system. Draw the Newsist plot for $C(s) = 1/g(s, M)$ and comment on system.	04 07
	(c)	Draw the Nyquist plot for $G(s) = 1/s(s+1)$ and comment on system stability.	U /
		OR C	
	(c)	For the signal flow graph shown in Fig. 1, using Mason's gain formula	07
		determine the overall transmission C/R.	
Q.3	(a)	What is polar plot?	03
	(b)	Using Routh's criterion check the stability of a system whose	04
	(0)	characteristic equation is given by $s^5 + 2s^4 + 2s^3 + 4s^2 + 11s + 10 = 0$ Obtain the state transition matrix for the state model whose system matrix	07
	(c)	is given by A=[1 1;0 1].	07
		OR	
Q.3	(a)	Describe in brief about PD controller.	03
	(b) (c)	List advantages of state variable analysis. Draw the bode plot for a unity feedback system having,	04 07
	(c)	100	07
		$G(s) = \frac{100}{s(1+0.5s)(1+0.1s)}$	
0.4			0.2
Q.4	(a)	Discuss following transient response specification: Delay Time, Peak overshoot, Settling Time	03
	(b)	Describe critical rules of block diagram reduction techniques.	04
	(c)	What is Root locus? Sketch the Root locus plot for the unity feedback	07
		system having open loop transfer function,	
		$G(s) = \frac{K}{s(s+3)(s^2+3s+4.5)}$	
0.4		OR	0.2
Q.4	(a) (b)	Define: Gain margin, phase margin, absolute stability Describe any four block diagram reduction techniques.	03 04
		Discuss steps to design a Lag Compensator using Bode plot method.	07
1	* /	7	
Q.5	(a)	Write a note on PID controller.	03
	(b)	Derive the expression for peak time Tp for a second order control system subjected to a unit step input.	04
	(c)	Write a short note on state space representation of a control system.	07

- Q.5 (a) Discuss the effect of feedback on sensitivity.
 (b) Explain the Lead Compensator with its transfer function.
 (c) Derive the state variable equation X = AX + BU and Y = CX + DU. Also
 07
 - (c) Derive the state variable equation $\dot{X} = AX + BU$ and Y = CX + DU. Also draw the state diagram

