Seat No.:		Enrolment No
	GUJARAT TECHNOLOGICAL	UNIVERSITY

BE - SEMESTER-III(NEW) EXAMINATION - WINTER 2022

Subject Code:3131103

Subject Name:Network Theory

Time:02:30 PM TO 05:00 PM Total Marks:70

Date:27-02-2023

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

	4.	Simple and non-programmable scientific calculators are allowed.	
			MARKS
Q.1	(a)		03
	(b)	characteristics in v-i plane. Discuss the following: (1) Linear and Non-Linear elements (2) Bilateral and Unilateral elements (3) Active and Passive elements (4) Lumped and Distributed Networks.	04
	(c)	The figure:1 shows three windings on a magnetic core. Using different shaped dots, establish polarity markings for the windings, and write KVL equations for this network.	07
Q.2	(a)	How many types of controlled sources are possible? Draw their symbols.	03
	(b)		04
	(c)	Find the current I_1 and I_2 in the network of figure:2 using mesh analysis. OR	07
	(c)		07
Q.3	(a)		03
	(b)		04
	(a)	R-C circuit having $R = 0.2\Omega$ and C=1F. Obtain current $i(t)$ through the circuit. Explain how to obtain the transient response of a first order system using	07
	(c)	an appropriate example. OR	07
0.2	(-)		0.2
Q.3	(a) (b)	Define the terms critical resistance, damping ratio, natural frequency	03 04
	(c)	and settling time for a series R-L-C circuit. In the network of figure: 4, a steady state is reached with the switch k	07
		open. At t=0, the switch is closed. Find the voltage across capacitor for t>0.	
Q.4	(a)	Obtain Laplace transform of (1) Unit Step function (2) Unit Ramp function (3) Unit Impulse function.	03
	(b) (c)	State (1) Millman's theorem (2) Maximum Power Theorem.	04 07
OR			
Q.4	(a)	Obtain Laplace transform of $(1)u(t-a)(2) r(t-a)(3)\delta(t-a)$.	03

