Seat No.:	Enrolment No.

		GUJARAT TECHNOLOGICAL UNIVERSITY	
		BE - SEMESTER-III(NEW) EXAMINATION – SUMMER 2023	
Subj	ect (Code:3131101 Date:26-07-2	2023
Subj	ect l	Name:Control Systems	
Time	:02:	30 PM TO 05:00 PM Total Mark	ks:70
Instru			
		Attempt all questions.	
		Make suitable assumptions wherever necessary. Figures to the right indicate full marks.) ′
		Simple and non-programmable scientific calculators are allowed.	
		0 - 0	MARKS
Q.1	(a)	Explain Close Loop System with Block diagram & Example.	03
	(b)	Discuss Force-Current (F-I) analogous system with analogous quantity.	04
	(c)	Define: Transfer function, Loop Gain, Steady-state error, Path Gain	07
Q.2	(a)	Discuss following terms with respect to Frequency response analysis.	03
	(b)	(i) Resonant Peak (ii) Resonant Frequency (iii) Bandwidth Explain standard test signals.	04
	(b) (c)	Discuss Unit-step time response of Second-order systems for $\xi > 0$.	07
	(c)	OR	07
	(c)	Consider a system represented by the following equations. Draw the	07
		Signal Flow Diagram of the system.	
		$X_1 = 6X_0 + 3X_2$, $X_2 = 12X_1 + 5X_2 + 2X_3$	
		$X_3 = 2X_2 + 3X_4$, $X_4 = 11X_3$	
0.3	()		0.2
Q.3	(a)	List properties of M-circles.	03
	(b)	Explain the Stable, Marginally stable and Unstable systems with diagram.	04
	(c)	Explain rules for block-diagram reduction technique.	07
	(0)	OR	07
Q.3	(a)	What is polar plot? Explain in brief.	03
	(b)	Derive the expressions for error constants K_p , $K_v & K_a$ corresponding	04
		to step, ramp and parabolic input respectively.	
	(c)	System-1 has transfer function $G_1(s) = \frac{30}{4s^2 + 3s + 6}$ and System-2 has	07
		transfer function $G_2(s) = \frac{2}{s+4}$. Find Cascade and parallel transfer	
		function for system 1 and system 2.	
		runction for system 1 and system 2.	
Q.4	(a)	Explain: Root locus And Centroid	03
	(b)	Explain the frequency response, state its application with possible	04
		limitations.	
	(c)	Discuss Lag compensator. Obtain the transfer function of a Lag	07
		Compensator.	
0.4	(-)	OR Describe Correlation between transfer function and state cross	0.2
Q.4	(a)	Describe Correlation between transfer function and state space equations.	03
	(b)		04

- Q.5 Explain concept of Relative stability.
 - Write a short note on state space representation of a control system. (b)
 - Obtain the Root-locus plot for the unity feedback system with transfer function.

$$G(s) = \frac{k}{s(s+2)}$$

OR

- Define: State & State Vector Q.5 (a)
 - (b) Write short note on PID controller.
 (c) By Hurwitz, find stability of s⁴ + 8s³ + 18s² + 16s + 5 = 0 04
 - 07

03

04

07

03