Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE- SEMESTER-IV (NEW) EXAMINATION - WINTER 2020

C1	4	Codo: 2141002 Deta: 00/02/202	11
	-	Code:3141002 Date:09/02/202	41
	•	Name: Analog Circuit Design	
	Time:02:30 PM TO 04:30 PM Total Marks		
Inst			
Q.1	(a) (b)	Explain Barkhausen criterion for oscillation. Explain internal block diagram of OP-AMP	03 04
	(c)	Explain the basic differentiator using an op-amp. What are the problems associated with this configuration? How they are overcome?	07
Q.2	(a)	Explain operation of PLL with basic blocks and mention any four applications of it in radio communication.	03
	(b)	Explain the working of a Square wave generator using op-amp	04
	(c)	Explain working of 555 timer based A-stable multivibrator.	07
Q.3	(a)	Explain the concept of V to I converter with floating load.	03
	(b)	Explain inverting and non inverting amplifier using op-amp	04
	(c)	Analyze second order butterworth low Pass filter. Draw its frequency response and state design procedure.	07
Q.4	(a)	Explain the concept of virtual ground in op-amp.	03
	(b)	Explain absolute wave circuit.	04
	(c)	What is need of clipper circuit? Explain op-amp as a positive and negative clipper along with necessary waveforms.	07
Q.5	(a)	What is Voltage limiter circuit?	03
	(b)	Explain summing, scaling and averaging amplifier.	04
	(c)	Draw op-amp based wein bridge oscillator. Obtain frequency of oscillation and discuss amplitude stabilization for same.	07
Q.6	(a)	Explain peak detector circuit	03
-		Explain differential amplifier using two op-amps	04
	(c)	Draw the hybrid Π common emitter transistor model. Also derive the expression for transistor trans-conductance.	07
Q.7	(a)	Discuss fixed and adjustable voltage regulator with necessary circuit diagrams.	03

(b)	Explain the magnitude and phase response of low pass function of biquad	04
(c)	circuit. Derive the high frequency trance conductance equation for g_m for CE amplifier.	07
	umpinier.	

Q.8	(a)	State the relation between hybrid- Π and h-parameters.	03
	(b)	Design RC phase oscillator for the frequency of 2 KHz.	04
	(c)	Derive high frequency current gain for CE amplifier with R _S .	07
