\qquad
\qquad
GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2021Subject Code:3141002Date:31/12/2021
Subject Name:Analog Circuit Design Time:10:30 AM TO 01:00 PM
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.
MARKS
Q. 1 (a) Define following terms. 03SVRR, Slew Rate, CMRR.
(b) List ideal characteristics of OP-AMP. 04
(c) Explain inverting integrator circuit using OP-AMP. 07
Q. 2 (a) Derive gain expression for voltage shunt F/B amplifier using OP-AMP. 03
(b) Explain peak detector using OP-AMP. 04
(c) Write and explain differential amplifier using three OP-AMP. 07
OR
(c) Explain Instrumentation amplifier circuit operation using OP-AMP. 07
Q. 3 (a) Explain circuit made up of OP-AMP that does addition of inputs. 03
(b) Explain $1^{\text {st }}$ order low pass filter using OP-AMP. 04
(c) Explain $2^{\text {nd }}$ order high pass filter using OP-AMP with derivations. 07
OR
Q. 3 (a) Define following terms. 03
Lock Range for PLL, Capture Range for PLL, Frequency Stability for Oscillators.
(b) Explain class A power amplifier. 04
(c) Draw and explain square wave generator using OP-AMP. 07
Q. 4 (a) Explain grounded load V to I converter using OP-AMP. 03
(b) Explain wien bridge oscillator using OP-AMP in detail. 04
(c) Explain CE short-circuit current gain without resistive load R_{L}. 07
OR
Q. 4 (a) Explain voltage limiter circuit using OP-AMP with suitable example. 03
(b) Draw and explain class B push pull power amplifier. 04
(c) Derive expression for trans-conductance gm in Hybrid - Π model. 07
Q. 5 (a) Design Monstable multivibrator for $\mathrm{T}_{\mathrm{P}}=1.1$ millisecond, take $\mathrm{C}=0.1$ 03 milliferad.
(b) Write short note on voltage regulator. 04
(c) Explain 555 Monostable multivibrator. 07
OR
Q. 5 (a) Explain sample and hold circuit using OP-AMP.03
(b) Design A-stable multivibrator using IC 555 for $\mathrm{Ton}=50 \%$ of T , take $\mathrm{F}=$ 04$1 \mathrm{KHz}, \mathrm{C}=0.1$ milliferad.
(c) Explain A-stable multivibrator using IC 555. 07
