\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV (NEW) EXAMINATION - SUMMER 2022

Subject Code:3141005
Date:27-06-2022

Subject Name:Signal \& Systems
 Time:10:30 AM TO 01:00 PM
 Instructions:

Total Marks: 70

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed. $\sin [x(t+2)]$;
(2) $y[n]=x[2-n]$ are memoryless, causal, linear, time invariant, stable.
Q. 2 (a) Write any three properties of Convolution Integral. 03
(b) (1) Write the relation between Unit Step and Impulse function. 04
(2) Write the relation between Unit Step and Ramp function.
(c) Determine the response of the system with impulse response $h(t)=\mathbf{0 7}$ $u(t)$ for the input $x(t)=e^{-2 t} u(t)$.

OR
(c) The impulse response of the relaxed LTI system is given as, $h[n]=$ $a^{n} u[n]$ and $|a|<1$. Determine the response of this system if it is excited by unit step sequence.
Q. 3 (a) State equations for trigonometric Fourier Series and exponential Fourier 03

Series.
(b) Bring out the difference between DFT and Fourier Transform. 04
(c) Use definition of the Fourier Series to determine the time domain signal 07 represented by the following Fourier series coefficients:

$$
X[k]=j \delta[k-1]-j \delta[k+1]+\delta[k-3]+\delta[k+3] \cdot \omega_{0}=2 \pi
$$

Q. 3 (a) State frequency shifting, time shifting and time scaling properties of 03 Fourier Transform.
(b) Obtain the Fourier Transform of following functions: (1) $x(t)=1 \quad 04$ (2) $x(t)=\operatorname{sgn}(t)$.
(c) Obtain the Fourier Transform of following functions: (1) $x(t)=07$ $\cos \omega_{0} t$
(2) $x(t)=\cos \omega_{c} t u(t)$.
Q. 4 (a) Evaluate the convolution $x[n] * \delta\left[n-n_{0}\right]$. 03
(b) Explain (1) Time Shifting and (2) Time Scaling operation with neat 04 figures.
(c) Determine 2 - point and 4 - point DFT of a sequence $x[n]=u[n]-07$ $u[n-2]$.

OR

Q. 4 (a) Discuss Causality and Stability of LTI systems using z - transform. 03
(b) Prove the duality property of Fourier Transform.
(c) Define Convolution sum. Show that (1) $x[n] * \delta[n]=x[n]$
(2) $x[n] * u\left[n-n_{0}\right]=\sum_{k=-\infty}^{n-n_{0}} x[k]$
Q. 5 (a) State final value and initial value theorem for z - transform.
(b) Write any four properties of ROC with respect to z - transform.
(c) Determine $\mathrm{z}-\operatorname{transform}$ of $x[n]=\cos \left(\Omega_{0} n\right) u[n]$
Q. 5 (a) State any three properties of z - transform.
(b) Find the z - transform and ROC of the following sequence:

$$
x[n]=\frac{1}{2} \delta[n+1]+5\left(\frac{1}{2}\right)^{-n} u[n]+4^{n} u[-n-1]
$$

(c) Determine the inverse z - transform of the following $X(z)$ by partial fraction expansion method,
$X(z)=\frac{(z+2)}{2 z^{2}-7 z+3}$ if the ROCs are (1) $|z|>3$ (2) $|z|<\frac{1}{2}$ and (3) $\frac{1}{2}<$ $|z|<3$.

