Subject Code:3141005Date:14-12Subject Name:Signal & SystemsImage: Code:Signal & Systems				
		:30 AM TO 01:00 PM Total Ma	rks:7(
Instru		Attempt all questions.		
	2.	Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.		
			MARI	
Q.1	(a) (b)	Compare Energy and Power Signals. If the given signal $x(t) = e^{-at}u(t)$. Draw the signals: $x(-t+2)$ and $x(-t-3)$.	03 04	
	(c)	Determine whether the following systems are : (1) Memoryless (2) Causal (3) Stable (4)Time Invariant (5) Linear. (I) $y(t) = x(0.5t)$ (II) $y[n] = x[n-1] + x[n]$.	07	
Q.2	(a) (b)	State and prove a condition for a discrete time LTI system to be stable. Find the step response of the system whose impulse response is : (1) $\delta[n+2] + \delta[n-3]$ (2) $u[n]$	03 04	
	(c)	Obtain convolution integral of : $x(t) = 1$ for $-1 \le t \le 1$ and $h(t) = 1$ for $0 \le t \le 2$	07	
	(c)	OR Obtain linear convolution of two discrete time signals given as : $x[n] = u[n]$ and $h[n] = a^n u[n], a < 1$.	07	
Q.3	(a)	Give the difference between DFT and DTFT.	03	
	(b)	1	04	
	(c)	State convolution property of Fourier Transform and find Fourier Transform of the following signal : $y(t) = e^{-at}u(t) * u(t)$. OR	07	
Q.3	(a)	Define DFT and IDFT.	03	
	(b) (c)	Determine complex exponential Fourier series of $cos(\omega_0 t)$ Determine the trigonometric Fourier Series of :	04 07	
		$\delta_{T_0}(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT_0)$	07	
Q.4	(a)	Define Sampling Theorem.	03	
Q.1	(b)	Find the Nyquist rate and interval of $x(t) = 5 \cos 1000\pi t \cos 4000\pi t$.	04	
	(c)	State and Prove Time Shifting Property of Fourier transform.	07	
Q.4	(a)	OR What is aliasing? How can we eliminate Aliasing?	03	
2.1	(b)	A bandpass signal has a spectral range that extends from 20 kHz to 82	03	
		kHz. Find the sampling frequency.		
	(c)	Define the continuous time Fourier Transform. State and prove Duality property of Fourier Transform.	07	
Q.5	(a)	State and prove Time Shifting Property of z Transform.	03	
	(b)	Determine z Transform of following sequences :	04	
		(1) $x[n] = \alpha^{- n }, 0 < \alpha < 1$ (2) $x[n] = 2^n u[n] + 3^n u[-n-1]$		

	(c)	Find the convolution of the signal using z Transform. $x_1[n] = a^n u[n]$, $a < 1$ and $x_2[n] = u[n]$	07
Q.5	(b)	OR State and prove Time Reversal Property of z Transform. Find z Transform of $x[n] = na^n u[n]$.	03 04
	(c)	Determine inverse z Transform of $X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$ If (1) ROC : $ z > 1$ (2) ROC : $ z < 0.5$ (3) ROC: $0.5 < z < 1$	07

		Co°	
		\mathbf{Q}	
	1		
<u>C5</u>			