Seat No.:	Enrolment No.
3Cat 110	Lindincht 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III (New) EXAMINATION - WINTER 2019

Subject Code: 3131102 Date: 30/11/2019

Subject Name: Digital System Design

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1	(a) (b)	State and prove De Morgan's theorem for 2 variables. Differentiate between combinational and sequential circuits.	03 04
	(c)	Design 4-bit binary to Grey code converter circuit and draw the logic diagram.	07
Q.2	(a)	Define canonical and standard forms of Boolean function and give their examples.	03
	(b)	Convert 375.125 into base 2, base 8, base 16 and BCD.	04
	(c)	Simplify the Boolean function $F(A,B,C,D) = \sum (1,3,7,11,15)$ using K-map if don't care conditions are 0, 2 and 5. Draw the simplified logic diagram only using NAND gates.	07
	(c)	Compare TTL, ECL and CMOS logic families and draw CMOS inverter logic circuit.	07
Q.3	(a)	Define: Encoder, Decoder, De-multiplexer.	03
•	(b)	Describe full adder circuit with truth table and logic diagram.	04
	(c)	Implement the Boolean function $F(W,X,Y,Z) = \sum (0,1,3,4,8,9,15)$ using suitable multiplexer.	07
0.2	(.)	OR	02
Q.3	(a)	Briefly explain the steps for VLSI design flow.	03
	(b)	Define a parity bit and design 3-bit odd parity generator circuit.	04
	(c)	Describe working principle of Programmable Logic Array with block diagrams.	07
Q.4	(a)	Derive excitation tables for R-S, J-K and T flip-flops.	03
((b)	Discuss working of clocked delay type flip-flop with characteristic table and logic diagram.	04
	(c)	Describe the operation of 4-bit bidirectional shift register with logic	07
		diagram.	
	()	OR	0.2
Q.4	(a)	Define: Register, Ripple counter, Synchronous counter.	03
	(b)	Explain working of Toggle flip-flop with characteristic table and logic diagram.	04
	(c)	Design a counter that counts the sequence as 0, 1, 2, 4, 5, 6 and rolls over to 0 again. Use +ve edge triggered J-K flip-flops.	07
Q.5	(a)	Compare asynchronous and synchronous state machines.	03
~	(b)	Discuss general state machine architecture.	04
	(c)	Define state table & state diagram. Draw state diagram of a state	07

machine with state table as given in Table-1. The state machine contains input variable X and output variable Y and two flip-flops A & B.

OR

Q.5	(a) (b)	Discuss working fundamentals behind FINFET. State various types of D/A converters and briefly explain any one of	03 04
	(c)	them. Explain dual slope type A/D converter in detail.	07

Present State AB	Next State AB		Output Y	
	X=0	X=1	X=0	X=1
00	00	01	0	0
01	11	01	0	0
10	10	00	0	1
11	10	11	0	0

Table-1.
