Seat No.: _____

Enrolment No.____

	(b)	The characteristic equation of a system is given by $S^4 + 8S^3 + 18S^2 + 16S + 4 = 0$.	4
		Investigate the stability of a system by means of Hurwitz criterion.	
	(c)	The open-loop transfer function of a feedback control system is	7
		$G(S).H(S) = \frac{K}{S(S+4)(S^2+4S+20)}.$ Construct the root locus.	
Q.5	(a)	Discuss following terms with respect to Frequency response analysis. (i) Resonant Peak (ii) Resonant Frequency (iii) Bandwidth	3
	(b)	Develop the Polar plot of $G(S) = \frac{10}{S(S+1)}$.	4
	(c)	Develop the Bode plots for the transfer function given below:	7
		$G(S).H(S) = \frac{10}{S(0.1S+1)(0.05S+1)}$. Find the gain margin and Phase margin.	
Q.6	(a)	Discuss Nyquist stability criterion.	3
	(b)	List properties of M-circles.	4
	(c)	The open-loop transfer function of a unity feedback control system is given	7
		as $G(S).H(S) = \frac{S+2}{(S+1)(S-1)}$. Investigate the closed-loop stability by applying Nyquist criterion.	
0.7	(a)	Justify: Compensation is required.	3
X	(b)	Discuss Lag compensator. Obtain the transfer function of a Lag Compensator.	4
	(c)	Design a lead compensator for a unity feedback system with an open-loop	7
		transfer function $G(S) = \frac{K}{C(S+1)}$ for the specifications of (i) static velocity	
		error constant $Kv = 10 \text{ sec}^{-1}$ and (ii) phase margin= 35°.	
Q.8	(a)	Define: (i) State (ii) State Variable (iii) State Vector	3
	(b)	List Advantages of State variable analysis.	4
	(c)	Construct the transfer function of	7
		$\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} -5 & -1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \end{bmatrix} \mathbf{r}(\mathbf{t}) \mathbf{Y} = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$	
