Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-V (NEW) EXAMINATION - WINTER 2020

Subject Code:3151105 Date:03/02/2021

Subject Name: VLSI Design

Time:10:30 AM TO 12:30 PM Total Marks: 56

Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

it's circuit diagram.

			MARKS
Q.1	(a)	Draw CMOS inverter circuit and cross section view of nMOSFET.	03
	(b)	Draw voltage transfer characteristics of inverter and define V_{IL} , V_{IH} , V_{OL} , V_{OH} , NM_L and NM_H .	04
	(c)	Derive threshold voltage equation and explain what is substrate bias effect.	07
Q.2	(a)	Realize following Boolean logic equation using CMOS inverter. Z= (AB+C(D+E))'	03
	(b)	Compare Static and Dynamic logic circuit.	04
	(c)	Derive drain current using gradual channel approximation.	07
Q.3	(a)	Draw VTC of CMOS inverter and find operating region of NMOS and PMOS at different input voltage ranges from 0 to Vdd.	03
	(b)	Derive Critical voltages V _{IL} and V _{IH} of CMOS inverter	04
	(c)	Consider a CMOS inverter with the following parameters: VTon = 0.6 V , VTop = -0.7 V , Kn' = 50 uA/V^2 , Kp' = 16 uA/V^2 , (W/L)n = 4, (W/L)p = 5 Calculate the noise margins of this circuit. The power supply voltage is VDD = 3.3 V .	07
Q.4	(a)	Draw resistive load inverter circuit and its VTC curve.	03
A	(b)	Derive critical voltages V_{OH} , V_{OL} , V_{IL} and V_{IH} of resistive load inverter.	04
	(c)	Design resistive load inverter with following parameters: VTon = 0.8 V, Kn' = 20 uA/V ² , (W/L)n = 2, R_L = 200 kohm and Vdd=5V. Calculate the noise margins of this circuit.	07
Q.5	(a)	Draw transistor level circuit diagram of NOR based SR latch using CMOS.	03
	(b)	Derive switching power dissipation equation of CMOS inverter with idea step input.	04
	(c)	Justify importance of transmission gate. Realize following functions using TG. i) F=AB+A'C'+AB'C and ii) F=AB' + A'B	07
0.6	(a)	What is need of domino CMOS logic circuit and draw	03

		aveform during high to low transition verter and derive expression for τ_{PHL}	
Q.7		lementation of D latch with two	03
	(b) Compare CPLD and		04 07
	(b) Compare constant v(c) What is need of Des	nd Planner MOSFET oltage and constant filed scaling. sign of Testability (DFT) in VLSI IC Built in Self Test (BIST) techniques ***********************************	
			2