\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-I \&II (NEW) EXAMINATION - SUMMER-2019

Subject Code: 3110014
Date: 06/06/2019
Subject Name: Mathematics - I
Time: 10:30 AM TO 01:30 PM
Total Marks: 70 Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Use L'Hospital's rule to find the limit of $\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\frac{1}{\ln x}\right)$.

Marks

(b) Define Gamma function and evaluate $\int_{0}^{\infty} e^{x^{2}} d x$.
(c) Evaluate $\int_{0}^{3} \int_{\frac{\sqrt{x}}{3}}^{1} e^{y^{2}} d y d x$.
Q. 2 (a) Define the convergence of a sequence (a_{n}) and verify whether the sequence whose $n^{\text {th }}$ term is $a_{n}=\left(\frac{n+1}{n-1}\right)^{n}$ converges or not.
(b) Sketch the region of integration and evaluate the integral $\iint_{R}\left(y-2 x^{2}\right) d A$ where R is the region inside the square $|x|+$ $|y|=1$.
(c) (i) Find the sum of the series $\sum_{n \geq 2} \frac{1}{4^{n}}$ and $\sum_{n \geq 1} \frac{4}{(4 n-3)(4 n+1)}$.
(ii) Use Taylor's series to estimate $\sin 38^{\circ}$.

OR
(c) Evaluate the integrals $\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{\left(1+x^{2}+y^{2}\right)^{2}} d x d y$ and $\int_{0}^{1} \int_{\sqrt[3]{z}}^{1} \int_{0}^{\ln 3} \frac{\pi e^{2 x} \sin \pi y^{2}}{y^{2}} d x d y d z$.
Q. 3 (a) If an electrostatic field E acts on a liquid or a gaseous polar dielectric, the net dipode moment P per unit volume is $P(E)=$ $\frac{e^{E}+e^{-E}}{e^{E}-e^{-E}}-\frac{1}{E}$. Show that $\lim _{E \rightarrow 0^{+}} P(E)=0$.
(b) For what values of the constant k does the second derivative04 test guarantee that $f(x, y)=x^{2}+k x y+y^{2}$ will have a saddle point at $(0,0)$? A local minimum at $(0,0)$?
(c) Find the series radius and interval of convergence for $\sum_{n=0}^{\infty} \frac{(3 x-2)^{n}}{n}$. For what values of x does the series converge absolutely?

OR

Q. 3 (a) Determine whether the integral $\int_{0}^{3} \frac{d x}{x-1}$ converges or diverges.
(b) Find the volume of the solid generated by revolving the region bounded by $y=\sqrt{x}$ and the lines $y=1, x=4$ about the line $y=1$.
(c) Check the convergence of the series $\sum_{n=1}^{\infty} \frac{(\ln n)^{3}}{n^{3}}$ and $\sum_{n=0}^{\infty}(-1)^{n}(\sqrt{n+\sqrt{n}}-\sqrt{n})$.
Q. 4 (a) Show that the function $f(x, y)=\frac{2 x^{2} y}{x^{4}+y^{2}}$ has no limit as (x, y) approaches to $(0,0)$.
(b) Suppose f is a differentiable function of x and y and $g(u, v)=$ $f\left(e^{u}+\sin v, e^{u}+\cos v\right)$. Use the following table to calculate $g_{u}(0,0), g_{v}(0,0), g_{u}(1,2)$ and $g_{v}(1,2)$.

	f	g	f_{x}	f_{y}
$(0,0)$	3	6	4	8
$(1,2)$	6	3	2	5

(c) Find the Fourier series of 2π-periodic function $f(x)=$07 $x^{2}, 0<x<2 \pi$ and hence deduce that $\frac{\pi^{2}}{6}=\sum_{n=0}^{\infty} \frac{1}{n^{2}}$.

OR

Q. 4 (a) Verify that the function $u=e^{-\alpha^{2} k^{2} t} \cdot \sin k x$ is a solution f the heat conduction euation $u_{t}=\alpha^{2} u_{x x}$.
(b) Find the half-range cosine series of the function

$$
f(x)=\left\{\begin{array}{l}
2, \tag{07}\\
0, \\
0<x<0<2
\end{array}\right.
$$

(c) Find the points on the sphere $x^{2}+y^{2}+z^{2}=4$ that are closest to and farthest from the point $(3,1,-1)$.
Q. 5 (a) Find the directional derivative $D_{u} f(x, y)$ if $f(x, y)=x^{3}-$ 03 $3 x y+4 y^{2}$ and u is the unit vector given by angle $\theta=\frac{\pi}{6}$. What is $D_{u} f(1,2)$?
(b) Find the area of the region bounded y the curves $y=\sin x, y=$ $\cos x$ and the lines $x=0$ and $x=\frac{\pi}{4}$.
(c) Prove that $A=\left[\begin{array}{ccc}0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right]$ is diagonalizable and use it to find A^{13}.

OR

Q. 5 (a) Define the rank of a matrix and find the rank of the matrix $A=03$ $\left[\begin{array}{ccc}2 & -1 & 0 \\ 4 & 5 & -3 \\ 1 & -4 & 7\end{array}\right]$
(b) Use Gauss-Jordan algorithm to solve the system of linear equations $2 x_{1}+2 x_{2}-x_{3}+x_{5}=0$

$$
\begin{gathered}
-x_{1}-x_{2}+2 x_{3}-3 x_{4}+x_{5}=0 \\
x_{1}+x_{2}-2 x_{3}-x_{5}=0 \\
x_{3}+x_{4}+x_{5}=0
\end{gathered}
$$

(c) State Cayley-Hamilton theorem and verify if for the matrix $A=\left[\begin{array}{ccc}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$.

