\qquad
\qquad \\ \title{
GUJARAT TECHNOLOGICAL UNIVERSITY \\ \title{
GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-I \&II (NEW) EXAMINATION - SUMMER-2019 \\ Subject Code: 3110015 \\ Date: 01/06/2019 \\ Subject Name: Mathematics -2 \\ Time: 10:30 AM TO 01:30 PM \\ Total Marks: 70 \\ \\ Instructions: \\ \\ Instructions: \\ 1. Attempt all questions. \\ 2. Make suitable assumptions wherever necessary. \\ 3. Figures to the right indicate full marks.
}

Marks

Q. 1 (a) Find the Fourier integral representation of
(b) Define: Unit step function. Use it to find the Laplace transform of
$f(t)=\left\{\begin{array}{cc}(t-1)^{2} & ; t \in(0,1] \\ 1 & ; t \in(1, \infty)\end{array}\right.$
(c) Use the method of undetermined coefficients to solve the differential equation $y^{\prime \prime}-2 y^{\prime}+y=x^{2} e^{x}$.
Q. 2 (a) Evaluate $\oint_{C} \bar{F} \cdot d \bar{r}$; where $\bar{F}=\left(x^{2}-y^{2}\right) \hat{\imath}+2 x y \hat{\jmath}$ and \boldsymbol{C} is the curve given by the parametric equation $\boldsymbol{C}: r(t)=t^{2} \hat{\imath}+t \hat{\jmath} ; 0 \leq t \leq 2$
(b) Apply Green's theorem to find the outward flux of a vector field $\bar{F}=$ $\frac{1}{x y}(x \hat{\imath}+y \hat{\jmath})$ across the curve bounded by $y=\sqrt{x}, 2 y=1$ and $x=1$.
(c) Integrate $f(x, y, z)=x-y z^{2}$ over the curve $C=C_{1}+C_{2}$, where C_{1} is the line segment joining $(0,0,1)$ to $(1,1,0)$ and \boldsymbol{C}_{2} is the curve $y=x^{2}$ joining $(1,1,0)$ to $(2,4,0)$.

OR

(c) Check whether the vector field $\bar{F}=e^{y+2 z} \hat{\imath}+x e^{y+2 z} \hat{\jmath}+2 x e^{y+2 z} \hat{k}$ is conservative or not. If yes, find the scalar potential function $\varphi(x, y, z)$ such that $\bar{F}=\operatorname{grad} \varphi$.

Q. 3 (a) Write a necessary and sufficient condition for the differential equation
$M(x, y) d x+N(x, y) d y=0$ to be exact differential equation. Hence check
whether the differential equation

$\left[(x+1) e^{x}-e^{y}\right] d x-x e^{y} d y=0$

is exact or not.
(b) Solve the differential equation

$$
\left(1+y^{2}\right) d x=\left(e^{-\tan ^{-1} y}-x\right) d y
$$

(c) By using Laplace transform solve a system of differential equations $\frac{d x}{d t}=\mathbf{0 7}$ $1-y, \frac{d y}{d t}=-x$, where $x(0)=1, y(0)=0$.
Q. 3 (a) Solve the differential equation
(b) Solve: $(x+1) \frac{d y}{d x}-y=e^{3 x}(x+1)^{2}$.
(c) By using Laplace transform solve a differential equation $\frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+6 y=$ e^{-t}, where $y(0)=0, y^{\prime}(0)=-1$.
Q. 4 (a) Find the general solution of the differential equation
$e^{-y} \frac{d y}{d x}+\frac{e^{-y}}{x}=\frac{1}{x^{2}}$
(b) Solve : $\frac{d^{3} y}{d x^{3}}-7 \frac{d y}{d x}+6 y=e^{x}$
(c) Find a power series solution of the differential equation $y^{\prime \prime}-x y=0$ near an ordinary point $x=0$.

OR

Q. 4 (a) Find the general solution of the differential equation $\frac{d y}{d x}+\frac{y}{x}-\sqrt{y}=0$.
(b) Solve : $x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}+2 y=x$
(c) Find a Frobenius series solution of the differential equation $2 x^{2} y^{\prime \prime}+x y^{\prime}-$ $(x+1) y=0$ near a regular-singular point $x=0$.
Q. 5 (a) Write Legendre's polynomial $P_{n}(x)$ of degree- n and hence obtain $P_{1}(x) \quad 03$ and $P_{2}(x)$ in powers of x.
(b) Classify ordinary points, singular points, regular-singular points and irregular-singular points (if exist) of the differential equation $y^{\prime \prime}+x y^{\prime}=$ 0.
(c) Solve the differential equation
$x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=x^{3} \cos x$ by using the method of variation of parameters.

OR
Q. 5 (a) Write Bessel's function $J_{p}(x)$ of the first kind of order- p and hence show that $J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x$.
(b) Classify ordinary points, singular points, regular-singular points and irregular-singular points (if exist) of the differential equation $x y^{\prime \prime}+y^{\prime}=$ 0.
(c) Solve the differential equation $y^{\prime \prime}+25 y=\sec 5 x$ by using the method of variation of parameters.

