	-	GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER–I &II (NEW) EXAMINATION – SUMMER-2019 Code: 3110015 Date: 01/06/20 Name: Mathematics –2	19		
Subject Name: Mathematics –2 Time: 10:30 AM TO 01:30 PM Total Marks: 70					
	uction		70		
		Attempt all questions.			
		Make suitable assumptions wherever necessary.			
	3.	Figures to the right indicate full marks.			
			Marks		
Q.1	(a)	Find the Fourier integral representation of	03		
		$f(x) = \begin{cases} x \; ; \; x \in (0, a) \\ 0 \; ; \; x \in (a, \infty) \end{cases}$			
	(b)	Define: Unit step function. Use it to find the Laplace transform of	04		
	(0)		04		
		$f(t) = \begin{cases} (t-1)^2 ; t \in (0,1] \\ 1 ; t \in (1,\infty) \end{cases}$			
	(c)		07		
		equation $y'' - 2y' + y = x^2 e^x$.			
Q.2	(a)	Evaluate $\oint_C \overline{F} \cdot d\overline{r}$; where $\overline{F} = (x^2 - y^2)\hat{i} + 2xy\hat{j}$ and C is the curve	03		
		given by the parametric equation			
		$C: r(t) = t^2 \hat{i} + t \hat{j}; \ 0 \le t \le 2.$			
	(b)	Apply Green's theorem to find the outward flux of a vector field \overline{F} =	04		
	$\frac{1}{xy}(x \hat{i} + y \hat{j})$ across the curve bounded by $y = \sqrt{x}$, $2y = 1$ and $x = 1$.				
		xy			
	(c)	Integrate $f(x, y, z) = x - yz^2$ over the curve $C = C_1 + C_2$, where C_1 is	07		
		the line segment joining (0,0,1) to (1,1,0) and C_2 is the curve $y=x^2$ joining			
		(1,1,0) to $(2,4,0)$.			
		OR			
	(c)	Check whether the vector field $\overline{F} = e^{y+2z} \hat{i} + x e^{y+2z} \hat{j} + 2x e^{y+2z} \hat{k}$ is	07		
	(C)	conservative or not. If yes, find the scalar potential function $\varphi(x, y, z)$ such	07		
		that $\overline{F} = \operatorname{grad} \varphi$.			
		gen y			
Q.3	(a)	Write a necessary and sufficient condition for the differential equation	03		
		M(x, y)dx + N(x, y)dy = 0 to be exact differential equation. Hence check			
		whether the differential equation $[(x + 1)e^{x} - e^{y}]dx - xe^{y}dy = 0$			
		$[(x + 1)e^{-} e^{-}]ux - xe^{-}uy = 0$ is exact or not.			
	(b)	-	04		
		$(1+y^2)dx = (e^{-\tan^{-1}y} - x)dy$	~-		
	(c)	By using Laplace transform solve a system of differential equations $\frac{dx}{dt}$ =	07		
		$1 - y$, $\frac{dy}{dt} = -x$, where $x(0) = 1, y(0) = 0$.			
		ut .			
03	(a)	OR Solve the differential equation	03		

Q.3 (a) Solve the differential equation

$$(2x^3 + 4y)dx - xdy = 0.$$

1

03

(b)	Solve: $(x + 1)\frac{dy}{dx} - y = e^{3x}(x + 1)^2$.	04

(c) By using Laplace transform solve a differential equation $\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y = 07$ e^{-t} , where y(0) = 0, y'(0) = -1.

Q.4 (a) Find the general solution of the differential equation

$$e^{-y} \frac{dy}{dx} + \frac{e^{-x}}{x^2} = \frac{1}{x^2}$$
(b) Solve: $\frac{d^3y}{dx^3} - 7\frac{dy}{dx} + 6y = e^x$
(c) Find a power series solution of the differential equation $y'' - xy = 0$ near an ordinary point $x=0$.
Q.4 (a) Find the general solution of the differential equation
 $\frac{dy}{dx} + \frac{y}{x} - \sqrt{y} = 0$.
(b) Solve: $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} + 2y = x$
(c) Find a Frobenius series solution of the differential equation $2x^2y'' + xy' - 07$
(c) Find a Frobenius series solution of the differential equation $2x^2y'' + xy' - 07$
(c) Find a Frobenius series solution of the differential equation $2x^2y'' + xy' - 07$
(c) Find a Frobenius series solution of the differential equation $2x^2y'' + xy' - 07$
(c) Find a Frobenius series solution of the differential equation $2x^2y'' + xy' - 07$
(c) Lassify ordinary points, singular points, regular-singular points and
irregular-singular points (if exist) of the differential equation $y'' + xy' = 0$.
(c) Solve the differential equation
 $x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + 2y = x^3 \cos x$
by using the method of variation of parameters.
Q.5 (a) Write Bessel's function $f_p(x)$ of the first kind of order-*p* and hence show
that $f_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$.
(b) Classify ordinary points, singular points, regular-singular points and
irregular-singular points (if exist) of the differential equation $xy'' + y' = 0$.
(c) Solve the differential equation $y'' + 25y = \sec 5x$
by using the method of variation of parameters.
(c) Solve the differential equation $y'' + 25y = \sec 5x$
by using the method of variation of parameters.
(d) Solve the differential equation $y'' + 25y = \sec 5x$
(f) Solve the differential equation $y'' + 25y = \sec 5x$
(f) Solve the differential equation $y'' + 25y = \sec 5x$
(f) Solve the differential equation of parameters.
