Seat No.:	Envolment No
Seat No	Enrolment No

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-I &II (NEW) EXAMINATION - SUMMER-2019

S	Subject	Code: 3110018 Date: 03/06/	2019
S	Subject	Name: Physics	
]	Γime: 1	0:30 AM TO 01:00 PM Total Mark	s: 70
I	nstructio	ns:	
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
		- 	Marks
Q.1	(a)	Give formation and applications of SQUID.	03
V	(b)	Explain intrinsic and extrinsic semiconductors with necessary diagram.	04
	(c)	What is PN junction diode? What is external bias? Describe its forward and reverse bias conditions with appropriate diagram.	07
Q.2	(a)	What is photo conductivity, photoluminescence, phototransistor?	03
Q.2	(b)	Calculate the energy gap of Si, given that radiation of wavelength 11,000 Å is incident on it. Also find allowed wavelength for Ge with energy gap 0.90 eV.	04
	(c)	Write a note on energy band diagram and formation of energy bands. OR	07
	(c)	Define Hall effect and Hall coefficient. Derive equation to find Hall voltage. What does it signify?	07
Q.3	(a)	Differentiate between soft and hard superconductors	03
C	(b)	What is London penetration depth? Derive its equations.	04
	(c)	Derive equations for n-type semiconductor to determine dependence of fermi level on temperature and doping concentration. OR	07
Q.3	(a)	The critical current density equal to 1.71 x 10 ⁸ A/m ² is required to change a superconducting wire of radius 0.5 mm at 4.2 K. If the critical temperature of the material is 7.18 K, calculate the maximum value of the critical magnetic field.	03
	(b)	Explain BCS theory for superconductivity.	04
	(c)	Write a note on metal semiconductor junctions.	07
Q.4	(a)	Write a note on exciton.	03
	(b)	Give details of applications of solar cell (at least 4)	04
	(c)	What is radiative and non-radiative transition. Explain in brief the optical	07
		joint density of states.	
0.4	(a)	OR What are direct and indirect hand gap?	02
Q.4	(a) (b)	What are direct and indirect band gap? What is deep level transient spectroscopy (DLTS)? Give its experimental	03 04
	(D)	procedure.	VŦ
	(c)	Discuss the technique to obtain band gap by UV-Vis spectroscopy using absorption or transmission.	07
Q.5	(a) (b)	What are capacitance voltage measurements? Consider n-type silicon semiconductor with a length of 100 μm , cross sectional area $10^{\text{-}7}$ cm², minority charge carrier life time $10^{\text{-}6}$ s, μ_e is 0.13 m^2 / Vs and μ_h is 0.05 m^2 / Vs.	03 04

Find (a) Electron transit time

	(c)	(b) Photo conductor gain when voltage applied to the photoconductor is 12 VDiscuss Van Der Pauw method.	07
Q.5	(a) (b) (c)	OR What is the cause and remedy for optical loss in photovoltaic cell? State principle and discuss working of semiconductor laser. What is photovoltaic effect? Explain construction and working of a solar cell with suitable diagram	03 04 07

			2