\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE- SEMESTER-I \& II (NEW) EXAMINATION - WINTER 2020

Subject Code:3110014
Date:16/03/2021
Subject Name:Mathematics - I
Time:10:30 AM TO 12:30 PM
Total Marks:47

Instructions:

1. Attempt any THREE questions from Q1 to Q6.
2. Q7 is compulsory.
3. Make suitable assumptions wherever necessary.
4. Figures to the right indicate full marks.
Q. 1 (a) Expand $\sin x$ in powers of $(x-\pi / 2)$.
(b) Evaluate $\lim _{x \rightarrow 0} \frac{\tan ^{2} x-x^{2}}{x^{2} \tan ^{2} x}$.
(c) (i) Check the convergence of $\int_{4}^{\infty} \frac{3 x+5}{x^{4}+7} d x$.
(ii) The region between the curve $y=\sqrt{x}, 0 \leq x \leq 4$ and the line $x=4$ is
revolved about the x-axis to generate a solid. Find its volume.
Q. 2 (a) If $u=\operatorname{cosec}^{-1}\left(\frac{x+y}{x^{2}+y^{2}}\right)$, show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\tan u$.
(b) Check the convergence of the series $\sum_{n=1}^{\infty} \frac{2^{n}+5}{3^{n}}$.
(c) (i) Test the convergence of the series $\sum_{n=1}^{\infty}(\sqrt{n+1}-\sqrt{n})$.
(ii) Test the convergence of $\sum_{n=1}^{\infty} \frac{2^{n}}{n^{3}+1}$.
Q. 3 (a) Solve the following equations by Gauss' elimination method: 03 $x+y+z=6, x+2 y+3 z=14,2 x+4 y+7 z=30$.
(b) If $u=f(x-y, y-z, z-x)$, prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.
(c) (i) Find the equation of the tangent plane and normal line to the surface
$x^{2}+2 y^{2}+3 z^{2}=12$ at $(1,2,-1)$.
(ii) For $f(x, y)=x^{3}+y^{3}-3 x y$, find the maximum and minimum values.
Q. 4 (a)

Find the rank of the matrix $\left[\begin{array}{cccc}8 & 0 & 0 & 16 \\ 0 & 0 & 0 & 6 \\ 0 & 9 & 9 & 9\end{array}\right]$.
(b) If $u=f(x+a t)+g(x-a t)$, prove that $\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
(c)
(i) Show that the function $f(x, y)=\left\{\begin{array}{c}\frac{2 x^{2} y}{x^{3}+y^{3}},(x, y) \neq(0,0) \\ 0,(x, y)=(0,0)\end{array}\right.$ is not
continuous at the origin.
(ii) Find the shortest distance from the point $(1,2,2)$ to the sphere $x^{2}+y^{2}+z^{2}=16$.
Q. 5 (a)

Use Gauss-Jordan method to find A^{-1}, if $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{array}\right]$.
(b) Using Caley-Hamilton theorem find A^{2}, if $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$. Also find A^{-1}.
(c) Find the Fourier cosine series for $f(x)=x^{2}, 0<x<\pi$. Hence show that
$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}$.
Q. 6 (a) Evaluate $\iint_{R} e^{2 x+3 y} d A$, where R is the triangle bounded by $x=0, y=0$, $x+y=1$.
(b) Find the eigen values and eigen vectors for the matrix $\left[\begin{array}{llc}0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right]$.
(c) Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d A$ by changing the order of integration.
Q. 7

Evaluate $\int_{0}^{\pi / 2} \int_{a(1-\cos \theta)}^{a} r^{2} d r d \theta$.
Q. 7 Find the area enclosed within the curves $y=2-x$ and $y^{2}=2(2-x)$.

