Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-1/2 EXAMINATION - WINTER 2021

Subject Code:3110011 Date:22/03/2022

Subject Name: Physics

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

4.	Simple and non-programmable scientific calculators are allowed.			
		Co	Marks	
Q.1	(a)	Define Hooke's law, stress and strain.	03	
	(b)	Explain various properties of LASER beam.	04	
	(c)	Describe Stress-Strain diagram in detail.	07	
		(7)		
Q.2	(a)	Define wave motion. Discuss different types of waves.	03	
	(b)	(i) A cinema hall has a volume of 9,500 m ³ . What should be	02	
	()	the total absorption in the hall if the reverberation time of 1.7 s		
		is to be maintained?		
		(ii) An ultrasonic source of 0.075 MHz sends down a pulse		
		towards the seabed, which returns after 0.95 s. The velocity of	02	
		ultrasound in sea water is 1800 m/s. Calculate the depth of the		
		sea and wavelength of pulse.		
	(c)	Discuss in detail the different types of elasticity. List different	07	
		factors affecting elasticity.		
	(0)	What are the factors affecting acoustics of the building and give	07	
	(c)	their remedies.	0 /	
Q.3	(a)	A brass bar having a cross-section of 1 cm ² is supported on two	03	
Q.5	(a)	knife-edges 1.5 m apart. A load of 2 kg at the center of the bar	0.5	
		depresses that point by 2.75 mm. What is the Young's Modulus		
		for brass?		
	(b)	Describe viscosity. How the comparison of viscosities of two	04	
		liquids can be done?		
	(c)	Establish the relation between Einstein's coefficients.	07	
0.0		OR	0.2	
Q.3	(a)	In the acoustic grating experiment, the wavelength of light	03	
		transmitted through a liquid is 5970 Å. The 1 st order angle of		
		diffraction is 0.195°. Calculate the velocity of ultrasound in the liquid having frequency 2.7 MHz.		
	(b)	Expand SQUID. How is it formed and give it's applications.	04	
	(c)	Explain in detail the production of ultrasonic waves through	07	
		piezoelectric oscillator method.	07	
0.4	(a)	Calculate the frequency to which piezoelectric oscillator circuit	03	
-		should be tunned so that a piezoelectric crystal of thickness 0.2		
0	, 7	cm vibrates in it's fundamental mode to generate ultrasonic		
1		waves. Young's modulus is 80 Gpa and density of material is		
		2654 kg/m^3		
	(b)	Define Cooper pair. Explain BCS theory for superconductors.	04	

(c) What are the applications of Ultrasound? Discuss them in detail.

OR

07

Q.4	(a)	The critical current density equal to 1.71 x 10 ⁸ A/m ² is required to change a superconducting wire of radius 0.5 mm at 4.18 K. If the critical temperature of the material is 7.5 K, calculate the	03
	(b)	maximum value of the critical magnetic field. Explain NDT with it's objectives.	04
	(c)	Explain in detail construction and working of He-Ne Gas	07
	(-)	LASER with necessary schematic and energy level diagrams.	
Q.5	(a)	A voltage of 6.7 µV is applied across a Josephson junction.	03
		What is the frequency of the radiation emitted by the junction	
		in GHz? Planck's constant = 6.626 x 10 ⁻³⁴ J.s	
	(b)	Define Optical resonator, life time, metastable state and	04
	(0)	pumping mechanism for LASER.	TU
	(c)	Define Superconductor. Discuss it's properties in detail.	07
		OR	
Q.5	(a)	A hall has a volume of 2790 m ³ . It's total absorption is	03
		equivalent to 98.80 m ² of open window. What will be the effect on reverberation time if the audience fill the hall and thereby	
		increase the absorption by another 98.80 m ² of open window.	
	(b)	What is ultrasonic waves? Give properties and detection	04
	(~)	methods for ultrasonics.	
	(c)	Give applications of LASER in various fields in detail.	07

		X Y	
	1		
_ A			
1	, 7	7	
()			