$\qquad$
$\qquad$

## GUJARAT TECHNOLOGICAL UNIVERSITY <br> BE - SEMESTER-1/2 EXAMINATION - WINTER 2021

Subject Code: 3110014
Date:19/03/2022
Subject Name:Mathematics - 1
Time:10:30 AM TO 01:30 PM
Total Marks:70

## Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

## MARKS

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}-2 \log (1+x)}{x \sin x} \tag{07}
\end{equation*}
$$

(c) Find the extreme values of the function

$$
f(x, y)=x^{3}+y^{3}-3 x-12 y+20
$$

Q. 2 (a) Use Ratio test to check the convergence of the series

$$
\sum_{n=1}^{\infty} \frac{2^{n}+1}{3^{n}+1}
$$

(b) Find the Maclaurin's series of $\cos x$ and use it to find the series of $\sin ^{2} x$.
(c) Find the Fourier series of $f(x)=x^{2}$ in the interval $(0,2 \pi)$ and hence deduce that $\frac{\pi^{2}}{12}=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\cdots$ OR
(c) Find the Fourier series of $f(x)=2 x-x^{2}$ in the interval 07 $(0,3)$.
Q. 3 (a) Find the directional derivative of $f(x, y, z)=x y z$ at the point 03
$P(-1,1,3)$ in the direction of the vector $\bar{a}=\hat{\imath}-2 \hat{\jmath}+2 \hat{k}$.
(b)

Find the rank of the matrix $\left[\begin{array}{cccc}0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0\end{array}\right]$ by reducing to
row echelon form.
(c) Find the eigenvalues and corresponding eigenvectors of the matrix

$$
\left.A=\underset{\substack{4 \\
-2 \\
-2 \\
-\mathbf{O R} \\
\mathbf{O R} \\
0}}{ } \begin{array}{c}
1 \\
\hline
\end{array}\right]
$$

Q. 3 (a) If $u=f(x-y, y-z, z-x)$, then prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=$ 0
(b) Find the inverse of the following matrix by Gauss-Jordan method:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 3 \\
1 & 0 & 8
\end{array}\right]
$$

(c) Verify Cayley-Hamilton theorem for the following matrix and use it to find $A^{-1}$

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right]
$$

Q. 4 (a)

If 1 is an eigenvalue of the matrix $\left[\begin{array}{ccc}2 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]$ then find its corresponding eigen vector.
(b) Expand $2 x^{3}+7 x^{2}+x-1$ in powers of $(x-2)$
(c) Solve following system by using Gauss Jordan method

$$
\begin{gather*}
x+2 y+z-w=-2  \tag{04}\\
2 x+3 y-z+2 w=7 \\
x+y+3 z-2 w=-6 \\
x+y+z+w=2
\end{gather*}
$$

OR
Q. 4 (a) Use integral test to show that the following infinite series is convergent

$$
\sum_{n=1}^{\infty} \frac{1}{n\left(1+\log ^{2} n\right)}
$$

(b) For the odd periodic function defined below, find the Fourier series

$$
f(x)=\left\{\begin{aligned}
-1, & -1<x<0 \\
1, & 0<x<1
\end{aligned}\right.
$$

(c) Determine the radius and interval of convergence of the
following infinite series

$$
x-\frac{x^{2}}{40}+\frac{x^{3}}{9}-\frac{x^{4}}{16}+\cdots
$$

Q. 5 (a) Show the following limit does not exist using different path approach

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2} y^{2}}{x^{4}+y^{4}}
$$

(b) Evaluate the following integral along the region $R$

$$
\iint_{R}(x+y) d y d x
$$

where $R$ is the region bounded by $x=0, x=2, y=x, y=$ $x+2$. Also, sketch the region.
(c) Change the order of integration and hence evaluate the same.

Do sketch the region.

$$
\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x
$$

OR
Q. 5 (a) The following integral is an improper integral of which type?

Evaluate

$$
\int_{0}^{\infty} \frac{d x}{x^{2}+1}
$$

(b) If $x=r \sin \theta \cos \varphi, y=r \sin \theta \sin \varphi, z=r \cos \theta$, then find the jacobian

$$
\frac{\partial(x, y, z)}{\partial(r, \theta, \varphi)}
$$

(c) Find the volume of the solid generated by rotating the region bounded by $y=x^{2}-2 x$ and $y=x$ about the line $y=4$.

