Seat No.: _____

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-1/2 EXAMINATION – WINTER 2021

Subject Code :	:3110015		Date:21/03/2022
~ - 4		 _	

Subject Name:Mathematics - 2

Time:10:30 AM TO 01:30 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Marks

03

07

- **Q.1** (a) Find $L\{t^3e^{-4t}\}$.
 - (b) Find $L^{-1} \left\{ \frac{6e^{-2s}}{s^2 + 4} \right\}$.
 - (c) Verify Green's theorem for the function $\overline{F} = (x + y)i + 2xyj$ and C is the rectangle in the xy-plane bounded by x = 0, y = 0, x = a, y = b.
- Q.2 (a) Find $L\{te^{4t}\cos 2t\}$.
 - (b) Find the Fourier cosine integral of $f(x) = \frac{\pi}{2}e^{-x}$, $x \ge 0$.
 - (c) (i) Find the directional derivative of $f(x, y, z) = 2x^2 + 3y^2 + z^2$ at the point (2,1,3) in the direction of $\bar{a} = (1,0,-2)$.
 - (ii) If $\overline{F} = (2y+3)i + xzj + (yz-x)k$, evaluate $\int_C \overline{F}.d\overline{r}$ along the path **04**
 - C: $x = 2t^2$, y = t, $z = t^3$ from t = 0 to t = 1.

OR

- (c) Solve in series 3xy''+2y'+y=0 using Frobeneous method.
- Q.3 (a) Find the arc length of the curve (semi-circular) 03 $x(t) = \cos t$, $y(t) = \sin t$, z(t) = 0; $0 \le t \le \pi$.
 - (b) A vector field is given by $\overline{F} = (x^2 + xy^2)i + (y^2 + x^2y)j$. Show that \overline{F} is irrotational and find its scalar potential.
 - (c) Use divergence theorem for $\overline{F} = (x^2 yz)i + (y^2 zx)j + (z^2 xy)k$ over the surface of rectangular parallelepiped, $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$ to evaluate $\iint_S \overline{F} \cdot \hat{n} ds$.

OR

- Q.3 (a) Solve $\frac{dy}{dx} y \cot x = 2x \sin x$.
 - **(b)** Solve $y''+y'-12y=e^{6x}$.
 - Solve $\frac{dy}{dt} 4y = 2e^{2t} + e^{4t}$ by Laplace transformation.

Q.4 03 Solve $\frac{dy}{dx} + \frac{y}{x} = y^3$. Solve $(x^2 - 4xy - 2y^2)dx + (y^2 - 4xy - 2x^2)dy = 0$. 04 **(b)** Solve $y''+9y'=2x^2$ using the method of undetermined coefficients. (c) **07** OR Solve $4xp^2 = (3x - a)^2$. **Q.4** (a) 03 Solve $x^2y'' + xy' - 4y = x^2$. **(b)** 04 (i) Express $2-3x+4x^2$ in terms of Legendre's polynomial. (c) 03 (ii) Find ordinary and singular points of $2x^2y''+6xy'+(x+3)y=0$. 04 Solve (y - px)(p - 1) = p. 03 **Q.5** (a) **(b)** Solve $(D^3 + D)y = \cos x$. 04 Solve $y''+4y = \sec 2x$ by using the method of variation of **07** (c) parameters. Solve $(D^3 - 6D^2 + 11D - 6)y = 0$. **03 Q.5** (a) Solve $(2x+3)^2$ y''-2(2x+3) y'-12 y = 6x. 04 **(b)** Find the series solution of $(1+x^2)y''+xy'-9y=0$ near the ordinary **07** (c) point x=0.
